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Microbial ecosystems are remarkably diverse, stable, and usually consist of a mixture of core and
peripheral species. Here we propose a conceptual model exhibiting all these emergent properties in
quantitative agreement with real ecosystem data, specifically species abundance and prevalence
distributions. Resource competition and metabolic commensalism drive the stochastic ecosystem assembly
in our model. We demonstrate that even when supplied with just one resource, ecosystems can exhibit high
diversity, increasing stability, and partial reproducibility between samples.
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Natural microbial ecosystems are remarkably diverse,
often harboring hundreds to thousands of coexisting species
in microscopic volumes [1–3]. How do these ecosystems
manage to acquire and maintain such a high diversity?
This so-called “paradox of the plankton” [4] is especially
surprising given that microbes are capable of rapid expo-
nential growth and fierce competition for nutrients. Indeed,
the competitive exclusion principle [2,5] postulates that the
number of species in an ecosystem at a steady state cannot
exceed the number of available nutrients.
Compounding this puzzle, theoretical studies [6] suggest

that highly diverse ecosystems are generally prone to
instabilities. This brings up a second question: how do
naturally occurring microbial ecosystems manage to remain
relatively stable despite their diversity?
Moreover, ecosystems operating under similar environ-

mental conditions could be rather different from each other in
terms of species composition [3,7,8]. This apparent lack of
reproducibility does not apply equally to different organisms.
Some species, classified as “core’” or “keystone,” are
detected in most individual ecosystems. Other “peripheral”
species are only observed in a small fraction of them.
Observed species’ prevalence distributions (the fraction of
similar ecosystems a species is detected in) are often U
shaped: their peaks occupied by these core and peripheral
species, respectively [7]; often, these are also correlated
with species abundances [8]. We are thus presented with a
third question: what determines the reproducibility (or lack
thereof) of species composition in microbial ecosystems?
Here, we introduce a conceptual model of a stochasti-

cally assembling microbial ecosystem, which in spite of its
simplicity, addresses and suggests possible solutions to all
three of these long-standing puzzles.

To explain the aforementioned high diversity and poor
reproducibility, previous models have relied on a number
of factors including spatial heterogeneity [5,9], temporal
and seasonal variations in resource availability [10,11],
thermodynamic constraints [12], microbial “warfare” and
cooperation via ecological feedbacks [13], and predation by
bacteriophages [14,15]. In contrast to this, our model
attributes high diversity to metabolic by-products secreted
by microbes due to incomplete resource-to-biomass con-
version, which could in turn be used by other species for
growth. By its very nature, our model simultaneously
exhibits (i) high species diversity, (ii) gradually increasing
stability—reached after repeated rearrangements, (iii) a
U-shaped prevalence distribution, and (iv) a positive abun-
dance-prevalence correlation.
While our model clearly does not include many of the

previously proposed factors known to affect these fea-
tures, we believe it is a reasonable first order description
of some real ecosystems, examples of which include the
human oral microbiome [7], methanogenic bioreactors
[16], and anaerobic digesters in wastewater treatment
plants [3].
Our model describes a dynamic microbial ecosystem in

which species attempt to populate the environment externally
supplied with a single resource. We assume that species can
convert only a fraction of consumed resources into their
biomass, while secreting the rest as metabolic by-products.
These in turn may serve as nutrient sources for other species
in the ecosystem. This allows even one externally supplied
resource to support high ecosystem diversity purely via
by-product-driven commensal interactions.
New species are constantly introduced to this environ-

ment from some external population. Their survival or

PHYSICAL REVIEW LETTERS 120, 158102 (2018)
Editors' Suggestion Featured in Physics

0031-9007=18=120(15)=158102(5) 158102-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.158102&domain=pdf&date_stamp=2018-04-13
https://doi.org/10.1103/PhysRevLett.120.158102
https://doi.org/10.1103/PhysRevLett.120.158102
https://doi.org/10.1103/PhysRevLett.120.158102
https://doi.org/10.1103/PhysRevLett.120.158102


extinction is determined by a simple rule dictated by
competitive exclusion. Because of the commensal relation-
ship between these species, elimination of just one species
may lead to an “extinction avalanche” in which multiple
species are lost.
We explore how species diversity in microbial ecosys-

tems is established over time. Moreover, by simulating
several instances of ecosystem assembly, we can separate
the set of core (high-prevalence) species from those with
progressively lower prevalence.
The dynamics in our bioreactorlike environment is fully

characterized by the concentrations of individual resources
(metabolites) labeled as C0; C1;… and the abundances of
all resident microbial species labeled as B1; B2;…. When
we initialize the model, each species is assigned a single
resource it can grow on and β ¼ 2 metabolic by-products.
All resources are randomly selected from a “universal
chemistry” of size Nuniv ¼ 5000. This choice is inspired by
the total number of metabolites in KEGG’s metabolic
database [17]. However, qualitatively similar results are
obtained for much smaller values Nuniv, for example, the
number of carbon sources typically utilized by microbes.
The environment is supplied with a single resource

(labeled 0) at a constant flux ϕ0. After several attempts,
the first microbial species (labeled 1) capable of utilizing
the resource 0 colonizes the environment. The following
equations determine the dynamical behavior of resource
concentration C0 and microbial abundance B1:

dC0

dt
¼ ϕ0 −

λ1C0B1

Y
− δC0; ð1Þ

dB1

dt
¼ λ1C0B1 − δB1: ð2Þ

Here, λ1C0 is the growth rate of the species 1 consuming
the resource 0 at a rate λ1C0=Y, where Y is the yield of the
biomass conversion process (microbial concentration per
unit resource concentration). The resource affinity λ is
assigned by a random draw from a log-normal distribution
such that the logarithm of λ has mean 0 and variance 1.
Our model is based on carefully following the flow of

resources (e.g., carbon) throughout the ecosystem. Different
resources could be interconverted into each other and into the
biomass of microbes. Hence it is convenient to measure all
microbial abundances in units of the resource concentration.
We adopt this change of units forBi for the rest of this Letter.
Microbial yield is given by Y ¼ ð1 − αÞ, where ð1 − αÞ < 1
represents the fraction of the consumed resource (e.g., carbon
atoms) successfully converted to biomass. The remainder is
secreted as two by-products 1 and 2 getting shares ν1α and
ν2α ¼ ð1 − ν1Þα, respectively.
Another interpretation of these equations would apply if

all processes in the ecosystem were energy limited (as
opposed to nutrient limited). In this case, it would be
convenient to measure the concentrations of both resources

and microbes in units of energy density. The factor (1 − α)
could then be interpreted as an energy conversion effi-
ciency. Because of dissipation, here it would be possible
for α (the fraction of the incoming energy flux secreted as
by-products) to be smaller than the leftovers from biomass
conversion. Barring small corrections, the results of our
model would be equally applicable to such energy-limited
ecosystems.
We assume that the concentrations of both microbes and

resources are diluted at the same rate, δ. It is straightfor-
ward to generalize our model to a case where these dilution
rates are in fact different (as is often the case in batch-fed
bioreactors). Throughout this Letter we are only interested
in the steady-state properties of the system, which can be
easily derived from Eqs. (1) and (2). At steady state, C�

0 and
B�
1 are given by

C�
0 ¼

δ

λ1
; ð3Þ

B�
1 ¼

ðϕ0 − δ2

λ1
ÞY

δ
¼ ϕ̃0ð1 − αÞ

δ
: ð4Þ

Here, to simplify our notation, we have introduced the
effective flux of a nutrient (adjusted for dilution), which is
given by ϕ̃0 ¼ ϕ0 − δC�

0 ¼ ϕ0 − ðδ2=λ1Þ. Note that (a) at
steady state, resource concentration C�

0 depends inversely
on λ implying that if two species were to compete for the
same resource, the one with a higher λ would drive the
resource concentration lower than the other, thus being
the only survivor of the two, and (b) unlike the steady-state
nutrient concentration, the steady-state species abundance
is largely independent of λ. Indeed, λ only enters this
equation via the effective resource flux which in the limit of
low dilution approximates ϕ0. Note that using a more
general expression for microbial growth, e.g., the Monod
equation, does not affect our results [18].
We simulate ecosystem assembly in discrete time steps

corresponding to the introduction of a new microbial
species into the ecosystem. We assume that these events
are sufficiently infrequent for the system to reach steady
state between two subsequent immigration attempts. We
measure time in the number of attempted species immigra-
tions. For a newly introduced species to survive, it must
both have its consumed resource present in the ecosystem,
and must also be most competitive on it, i.e., have the
highest λ.
In this case, its steady-state abundance is determined by

Eq. (4) but with the effective flux ϕ̃i of its consumed
resource. If all by-products are equally partitioned, the
average effective flux at trophic layer l is related to the
external resource flux via

hϕ̃iil ¼ ϕ0

�
α

β

�
l
−
δ2

λ

�
1þ α

β

�
l
: ð5Þ

PHYSICAL REVIEW LETTERS 120, 158102 (2018)

158102-2



Note that if a new species competitively displaces another,
any species that directly or indirectly depend on the latter
for by-products could also go extinct. Very rarely, this
extinction might be averted as long as at least one other
resident species produces the same by-product and the
remaining flux satisfies ϕ̃ > 0. As ecosystem assembly
proceeds, we observe that the distribution of the number
of species that go extinct during such events gets broader
[see Fig. 1(c)]. Over many steps of ecosystem assembly,
as species use and secrete more by-products, the entire
ecosystem assumes a treelike structure [see Fig. 1(a) for
ecosystem structure and Fig. 1(b) for sample dynamical
trajectories].
Our model ecosystems have two interesting emergent

features. First, species’ steady-state abundances follow a
power law. Indeed, at trophic layer l a typical species’
abundance is determined by its consumed resource flux as
hB�il ≈ ½hϕ̃iilð1 − αÞ=δ�. Each layer can accommodate βl

species, where β is the number of by-products per species.
We can show [18] that the species’ steady-state abundance
distribution follows

N ðB ¼ bÞ ∼ b−ð1þ
log β

j logαjþlogðαþβÞÞ: ð6Þ
A rank-abundance plot [see Fig. 2(a)] follows a power law
with exponent ½j log αj þ logðαþ βÞ�= log β. For appropri-
ately chosen α, both this expression and our simulations
[solid curves in Fig. 2(a)] agree with data from microbial
ecosystems sampled from the human tongue [7] and
methanogenic bioreactors [16] [open circles in Fig. 2(a)].
Second, the dilution rate δ sets a limit to the number of

species in the ecosystem. This happens when the resource
flux at the bottom-most layer lmax becomes negative [see
Eq. (5)]. The number of species in the ecosystem [18] is
proportional to βlmax and given by

N maxðδÞ ∼ δ−ð
2 log β

j logαjþlogðαþβÞÞ: ð7Þ
For β ¼ 2 and α ¼ 0.1, this expression [black solid line in
Fig. 2(b)] approximates our simulated ecosystems [red
solid line in Fig. 2(b)]. Note that this expression provides
an upper bound to the number of species. It assumes both
equal partitioning of all by-products and equal λ’s for all
species.

FIG. 1. Ecosystem assembly in the model. (a) The diagram illustrates different phases in the assembly dynamics involving species
(yellow squares) consuming resources (green circles). Sizes are indicative of the steady-state abundances and concentrations. Initially,
only a single externally supplied resource (the largest green circle) is available and consumed by a microbe, which in turn secretes
β ¼ 2metabolic by-products. New species immigrate into this ecosystem (immigration events marked on the timeline), each using only
one resource. Ecosystem establishment is contingent on the following assembly rule: if the resource affinity λ of the new species is
higher than any resident species on its chosen resource, the immigrant species survives and the resident goes extinct (along with all its
dependents). (b) A sample assembly trajectory (in red) of the ecosystem size (number of species) as a function of time (t, measured in
number of immigration attempts) at dilution rate δ ¼ 10−1 days−1. The gray envelope shows ecosystem sizes over 1000 assembly
trajectories. (c) Extinction size distributions (number of species that go extinct during a single immigration event) get broader as
ecosystem assembly proceeds: t < 101 (blue); 101 < t < 102 (green), and 102 < t < 103 (orange).
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We now attempt to understand the reproducibility of
species composition in similar ecosystems. For this, we
first generate a “species pool” by running one instance of
ecosystem assembly until it reaches 1000 species. Even
transiently successful colonizers are added to this pool. We
then simulate several instances of stochastic ecosystem
assembly under identical initial conditions. Species attempt
to colonize each ecosystem from the pool randomly (with
replacement), with the assumption that each species has the
same average immigration rate. The assembly process runs
for a fixed time period τ measured by the number of per
species immigration attempts.
After collecting several ecosystems for τ¼fð1=10Þ;1;2g,

we plot the distribution of species prevalence—the fraction
of randomly assembled ecosystems in which a species is
present [see Fig. 3(a)]. We observe that the shape of this
distribution becomes more pronouncedly “U shaped” with
increasing τ. For small values of τ [Fig. 3(a), violet] the
distribution is dominated by the species with small preva-
lence values. This indicates that for such short time of
assembly stochastic species colonization dominates. For
higher values of τ (shown in green and red), the distribution
is “U shaped”; i.e., most species are either core (found in
most ecosystem instances) or peripheral (found in a small
fraction of them). This can be explained as follows: as
assembly proceeds, species from the pool which use high-
flux resources with the largest resource affinities establish
themselves at the top trophic layers. After some delay, other
species from the pool that depend on these can successfully
colonize middle trophic layers. However, stochastic colo-
nization continues to dominate in the lowest trophic layers
and contributes to the low-prevalence portion of theU shape.
Such a U-shaped prevalence distribution is observed in
many real microbial communities: such as longitudinal
samples of the human oral microbiome [7] [see the gray
distribution in Fig. 3(b); the model prediction is shown in

black for comparison] and anaerobic digesters in wastewater
treatment plants [3].
Real ecosystems are often characterized by a positive

correlation between the prevalence and relative abundance of
species [see the scatter plot in Fig. 3(d) for oral microbiome
and Fig. 2(b) in Ref. [3] for wastewater plants]. This
observation is also captured well by our model: high-
prevalence species tend to be consumers of resources at
higher trophic layers and thus tend to be highly abundant [see
model prediction in Fig. 3(c)].
To summarize, we present here a conceptual model of a

microbial ecosystem which demonstrates some ecological
consequences of metabolic facilitation—all of which are
bornewell by data from real ecosystems.What distinguishes
our model from previous “consumer-resource” [10,20,21]
approaches? First, we explicitly model energy conservation
in the form of incomplete resource-to-biomass conversion
and generate metabolic by-products from what remains.
Second, we explicitly handle species abundances to explain
why they scale according to a power law. Finally,wegenerate
and explain species reproducibility from many microbial
communities by simulating several stochastic assemblies.
Data from microbial ecosystems in different environ-

ments corroborate the overarching predictions of this
model, namely: human oral microbiome samples [7], soil

(a) (b)

FIG. 2. Emergent ecological features. (a) Rank-abundance plot
of normalized species abundances in a methanogenic bioreactor
[16] (blue circles) and the human oral microbiome [7] (red
circles) and, for comparison, simulated ecosystems from our
model (corresponding solid lines) with α equal to 0.5 and 0.1,
respectively. (b) The dilution rate δ in the chemostat controls the
maximal size N max of the ecosystem coexisting on a single
externally supplied resource. Here, α ¼ 0.1 and β ¼ 2. N
approximately agrees with the expression in Eq. (7).

(a) (c)

(b) (d)

FIG. 3. Reproducibility from repeated assembly. (a) Species
prevalence distributions from several ecosystems stochastically
assembled from a common pool of 1000 species (here α ¼ 0.1).
Shown are distributions for different times τ in the assembly
process (measured in number of immigration attempts by any one
species): 0.1 (violet) at which most species have low prevalence,
1 (green) and 2 (red) for which we observe a U-shaped
distribution (some core species, most peripheral). (b) The dis-
tribution for τ ¼ 1 (black) matches largely with that in longitu-
dinally sampled human oral microbiome (tongue) [7] (gray). (c),
(d) Normalized species abundance data correlates positively
with species abundance in both (c) simulations and (d) oral
microbiome.
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communities [8], wastewater treatment plants [3], and
methanogenic bioreactors [16]. Interestingly, the oral data
we use are from the human tongue, which is believed to be
assembled in a specific temporal order; i.e., late-colonizing
species depend on the ones that came before them [22].
This is very similar to themechanismbehind our simulations.
Note that our model contains a number of simplifying

assumptions that are not realistic. (a) While energy is still
strictly conserved in our model through balancing fluxes,
we allow microbes to generate by-products with higher
energy content (per molecule) out of resources with lower
energy. However, the general direction of the metabolic
flow in real biochemical pathways is down the energy
gradient. We take this into account in model variant A [18]
where metabolites are arranged in an energy hierarchy so
that by-products always have lower energy content (per
molecule) than their parent resource. (b) When generating
new species, we assign their by-products randomly from a
large set of possible metabolites. In reality, the number of
possible metabolic pathways utilizing a given resource is
smaller. For example, Ref. [12] lists 5 distinct glucose
utilization pathways. We take this into account in model
variant B [18] where each resource can be utilized via η ¼ 5
distinct metabolic pathways, each producing its own set of
β ¼ 2 by-products. (c) Species consuming the same re-
source are thought to be subject to a “rate-yield trade-off”
[10,23,24], which states that microbial species with faster
growth rates on a given resource tend to use it less
efficiently. Both model variants A and B [18] take this
trade-off into account. Simulations from both variants show
that our central results remain qualitatively unaffected by
all these modifications [18].
Also note that we assume here that each microbe can use

only one resource. In reality, microbes can typically use
multiple resources for growth. However, such an extension
involves several choices. First, one needs to decide if a
microbe would consume resources in parallel or sequen-
tially (both cases are observed in real microbes). Second,
one may envisage trade-offs between resource affinity per
resource and the number of resources. One extreme limit of
this trade-off in which the sum of affinities always adds up
to the same number has been recently modeled in Ref. [25].
We are currently considering alternative models which
incorporate these choices.
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