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Severe population collapses and species extinctions in multihost epidemic dynamics
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Most infectious diseases, including more than half of known human pathogens, are not restricted to just one
host, yet much of the mathematical modeling of infections has been limited to a single species. We investigate
consequences of a single epidemic propagating in multiple species and compare and contrast it with the endemic
steady state of the disease. We use the two-species susceptible-infected-recovered model to calculate the severity
of postepidemic collapses in populations of two-host species as a function of their initial population sizes, the
times individuals remain infectious, and the matrix of infection rates. We derive the criteria for a very large,
extinction-level, population collapse in one or both of the species. The main conclusion of our study is that a
single epidemic could drive a species with high mortality rate to local or even global extinction provided that it
is coinfected with an abundant species. Such collapse-driven extinctions depend on factors different than those
in the endemic steady state of the disease.
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I. INTRODUCTION

Models of pathogen dynamics for the most part include
only a single host species [1] in spite of the fact that pathogens
typically infect multiple species. For example, more than
half of human pathogens are known to be shared with at
least one animal species [2,3]. Famous examples of diseases
with multiple host species include cholera (Vibrio cholerae)
commensal in a number zooplankton species [4,5], Lyme
disease, whose vector has been reported to prey on more
than 100 species of mammals, birds, and reptiles [6,7],
bubonic plague (Yersinia pestis) coinfecting and spreading
between humans and rats [8], and more recently the avian
influenza virus [9]. The steady state of dynamical equations
where multiple hosts are infected by the same pathogen was
previously considered by Dobson [10]. This important study
addressed the interplay between the diversity of hosts and the
stability of disease’s endemic state. In our study, we chose to
focus on the transient (as opposed to the steady state) dynamics
of a single epidemic as it is spreading in several species. While
our mathematical formalism can be easily generalized to an
arbitrary number of species, our main results can be already
demonstrated for just two species. In what follows we use only
this simpler two-species model.

The dynamic of a single epidemic of a disease is often
described in terms of the susceptible-infected-removed (SIR)
model [11] and its variants: dS/dt = −βSI , dI/dt = βSI −
γ I and dD/dt = γ I . In this model, individual members of the
population susceptible to disease (S) become infected (I ) and
are subsequently removed from the pool spreading the disease
due to either their death (D) or newly acquired immunity.
While from the mathematical perspective there is no difference
between death and complete resistance to disease, only the
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former results in population collapses that are the focus of
our study. A well-known property of the single species SIR
model [11] is that in the course of the first epidemic the
population of the host species drops to a much lower level
than its ultimate steady state population in the endemic state
of the diseases. When this population collapse is especially
severe the host species is vulnerable to either local or even
complete extinction. Such collapses along with extinction
events triggered by them are the main focus of our study.

The mass-action equations describing the dynamics of
transitions between the three states of the SIR model can be
described by a single key parameter, R0 [equal to βS(0)/γ
in the notation used above], called the basic reproduction
number or the epidemiological threshold. It is defined as
the number of new infections caused by each infected
individual at the very start of the epidemic when the density
of susceptible individuals is still close to S(0)—its value
at the start of the epidemic. Thus, for R0 > 1 the infection
started by a very small number of infected individuals will (at
least initially) exponentially amplify and ultimately reduce
the size of the susceptible population. In the opposite case,
R0 < 1 the initial infection will quickly fizzle out and the
population size will remain virtually unchanged. As the
epidemic spreads, the number of susceptible targets declines,
ultimately leaving S(collapse) survivors. For R0 � 1, the
population collapse is given by the exponential function
of R0: S(collapse) � S(0) exp[−R0]) for 0 < I (0) � S(0).
The exponential decline in the number of these survivors
of an epidemic as a function of R0 can be derived through
eliminating the nonlinear term in the SIR model by measuring
time in units of the number of deaths: dS/dD = −(β/γ )S.
Thus, S(t) = S(0) exp[−βD(t)/γ ] leading to the final
number of survivors after the epidemic ran its course
S(collapse)=S(0) exp[−βD(collapse)/γ ]=S(0) exp{−β[S(0)
−S(collapse)]/γ }�S(0) exp[−βS(0)/γ ] = S(0) exp[−R0].

It is illustrative to compare the size of the population after
a collapse with its steady-state value in the endemic state of
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the disease. Such endemic state requires a constant source
of susceptible individuals, which is traditionally realized
by adding a small birth term to the SIR model (see, e.g.,
Ref. [10]). The collapse [S(0) → S(0)/γ ] = S(0) exp[−R0]
dramatically overshoots the endemic steady state population
density S(steady state) = S(0)/R0. In the endemic state of
the disease, each infected individual transmits it to exactly
one other susceptible individual, thereby keeping a permanent
infection going without exponential expansion or decay.
Hence, 1 = S(steady state)β/γ = S(steady state)R0/S(0).

A classic example of a pathogen-host ecosystem overshoot-
ing its steady state immediately after the first epidemic can
be found, e.g., in the experiments carried out in Ref. [12]:
when a new phage was introduced into a bacterial population
dominated by susceptible strains resulted in a bacterial
population drop by roughly five orders of magnitude followed
by a slow recovery to the steady state, which is only one order
of magnitude lower than the population at the start of the
experiment. Similar contrast between the initial population
collapse is possible for epidemics of airborne diseases such
as measles or small pox where R0 could exceed 10 in an
immunological naive population. While measles or small pox
do not always kill infected individuals, if a similarly contagious
disease that is 100% lethal to its hosts was to emerge, the
initial epidemic-induced collapse exp(−R0) = exp(−10) ∼
5 × 10−5 would reduce host’s population to much below its
long-term steady-state level of 1/R0 ∼ 1/10 achieved when
(or if) such disease would become endemic. One expects a
local extinction of the species if the population of survivors
after the epidemic, S(collapse) � S(0) exp(−R0), drops below
one individual.

In this paper, we model a single epidemic of a disease
infecting multiple host species and investigate how its transient
dynamics can result in a severe collapse or even local extinction
of either of these species. Such a scenario is realistic because
epidemics routinely spill over to other species, that is to
say, diseases transiently or permanently transverse species
boundaries. For example, several Ebola epidemics in wild
gorilla groups in central Africa happened between 2002 and
2003 resulted in 90%–95% reduction in gorilla populations
[13]. Such local near-extinction collapses have been blamed
on ongoing spillover of the Ebola virus from its reservoir host,
fruit eating bats, subsequently amplified by ape-to-ape virus
transmission [14].

II. METHODS

The two-host SIR model describes the disease propagation
in species 1 and 2 via the following system of ODEs:

dS1

dt
= −β11S1I1 − β12S1I2,

dI1

dt
= β11S1I1 + β12S1I2 − γ1I1,

dD1

dt
= γ1I1,

dS2

dt
= −β21S2I1 − β22S2I2,

dI2

dt
= β21S2I1 + β22S2I2 − γ2I2,

dD2

dt
= γ2I2. (1)

Here we assume density-dependent transmission mechanism
characteristic of nonsexually or vector-transmitted diseases in
well-mixed populations. We use the traditional notation [10],
where βij is the matrix of transmission rates from species j to
species i.

The SIR equations remain the same if instead of dying
infected individuals recover with full immunity. However,
since the focus of our study is on population collapses, we
choose to interpret γi as the death rate of infected individuals of
the species i (see Discussion for a more general case including
both death and recovery). Si , Ii , and Di refer to population
densities of susceptible, infected, and dead individuals in each
of two species correspondingly. Our model describes the time
course of a single epidemic during which we ignore births
of new susceptible individuals. This approximation is justified
when the time from infection to death is fast compared to other
timescales in the system.

The epidemic is initiated at time t = 0 with a very small
numbers of infected hosts in either one or both species: I1(0) �
S1(0) and I2(0) � S2(0). In this limit, the resulting population
dynamics is independent of the exact values of I1(0) and I2(0).

III. RESULTS

We numerically simulated the time dynamics of Eqs. (1);
see Fig. 1. To compare the results of a single epidemic to
the endemic state of the disease we added a small birth
term with saturation given by 0.01 × Si(t)[1 − Si(t)] to the
right-hand side of the equations for dSi(t)/dt . We also
added even smaller natural (nondisease related) death term
−0.0001 × Si(t) to equations for dSi(t)/dt and a similar death
term −0.0001 × Ii(t) to equations for dIi(t)/dt . This term
ensures the flow of newly born susceptible individuals without
affecting much either the population collapse after the first
epidemic nor the long-term steady state of the system. We then
start our simulations at a pre-epidemic susceptible population
Si(0) = 0.99 ∼ 1. The general steady-state analysis of these
equations has been carried out by Dobson [10]. The birth term
used in our study differs slightly from that used in Ref. [10]
as we assume that infected individuals are infertile. When
the growth rate is small (i.e., � γ,β) these choices do not
significantly influence the collapse ratio (data not shown). In
our interpretation of the SIR model the “removed” individuals
are dead and thus (naturally) not included in the birth term.
This would change if infected individuals recover with a full
immunity and are capable of giving birth [10].

We first consider a simple scenario when the transmission
is unidirectional 2 → 1. In this case, an epidemic started in
the species 2 would spill over to the species 1 and cause its
population to collapse but not vice versa. A case study is
presented in Fig. 1 where we plot time-courses of susceptible
populations S1(t) (blue) and S2(t) (red) defined by Eqs. (1)
with β11 = β12 = β22 = 5, β21 = 0, and γ1 = γ2 = 1.

For the case explored in Fig. 1 the population dynamics
of the second species is independent of the first one. Thus,
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FIG. 1. Top panel summarizes the SIR model [Eqs. (1)] in
which susceptible populations of two species with lower curve
S1(blue) and upper curve S2(red) are infected by a single pathogen
with (cross)infection rates β11 = β12 = β22 = 5, β21 = 0. Infected
individuals I1,2 die (transition to D1,2) at rates γ1 = γ2 = 1. The
bottom panel shows the simulated time courses of S1(t) (blue) and
S2(t) (red) with initial conditions S1(0) = S2(0) = 1 and I1(0) =
0,I2(0) = 10−6. In order for equations to have a long-term endemic
steady state of the pathogen, we added a small birth and natural
death terms as described in the text. Right and left red arrows,
respectively, point to the predicted steady state of the second
population S2(steady state) = 1/5, and its population, S2(collapse) �
exp(−5), immediately after the initial epidemic ran its course. The
blue arrow points to a much more severe postepidemic collapse of
the first species: S1(collapse) � exp(−10).

like in a single-species case outlined before, its epidemics is
characterized by the basic reproduction number S(0)β22/γ2 =
5. In the endemic steady state its population is expected to
be close to S2(steady state) = 1/5 (the red dashed line in
Fig. 1), while its initial postepidemic collapse population to
be approximately equal to S2(collapse) = exp(−5) (the red
arrow on the left of Fig. 1). Noticeably, the species 1 (shown
with blue) positioned “downstream” of the epidemics in the
species 2, is exposed to a much worse disease outbreak than
the species 2. Its population collapses down to S1(collapse) =
exp(−10) � S2(collapse). This amplification of outbreaks in
two- or multihost epidemics can be described by the general
theoretical framework described below.

Equations (1) include both the unidirectional case discussed
above, and the possibility that there is cross-infections in both
directions. The equations can be solved by introducing two
“composite death toll” variables D̃1 = β11D1/γ1 + β12D2/γ2

and D̃2 = β21D1/γ1 + β22D2/γ2. When these variables are
used instead of time for each of two species, their susceptible
populations follow a simple exponential decay dS1/dD̃1 =
−S1 and dS2/dD̃2 = −S2 ending at their new postcollapse
densities given by S1(collapse) = S1(0) exp[−D̃1(collapse)]
and S2(collapse) = S2(0) exp[−D̃2(collapse)]. We quantify
the impact of the epidemic on populations of each of two
species by �i defined by exp(−�i) = S1(collapse)/S1(0).

Since at the end of the epidemic the number of
infected individuals is equal to zero, the overall death
tolls are given by D1(collapse) = S1(0) − S1(collapse) and
D2(collapse) = S2(0) − S2(collapse). The fractions of two
populations that died during the epidemic ρ1 = D1(collapse)/
S1(0) = 1 − S1(collapse)/S1(0)=1 − exp(−�1) and ρ2 =D2

(collapse)/S2(0) = 1 − S2(collapse)/S2(0) = 1 − exp(−�2)
are then self-consistently determined by

�1 = [β11S1(0)/γ1]ρ1 + [β12S2(0)/γ2]ρ2,

�2 = [β21S1(0)/γ1]ρ1 + [β22S2(0)/γ2]ρ2. (2)

This nonlinear system of equations can be numerically (e.g.,
iteratively) solved for ρi = 1 − exp(−�1). The solution is fully
determined by the collapse matrix:

Ĉ =
(

β11S1(0)
γ1

β12S2(0)
γ2

β21S1(0)
γ1

β22S2(0)
γ2

)
. (3)

Note, that this collapse matrix, describing the cumulative
aftermath of an epidemic, is subtly yet critically different
from the commonly used “next generation matrix” [15,16],
describing the dynamics at the very start of the epidemic:

K̂ =
(

β11S1(0)
γ1

β12S1(0)
γ2

β21S2(0)
γ1

β22S2(0)
γ2

)
.

One can show that a nonzero collapse with �i > 0 in any of the
species is possible if and only if the largest eigenvalue of the
matrix Ĉ exceeds 1. This does not contradict the classic result
[10,15,16] that the basic reproduction number of the epidemic,
R0 > 1, is equal to the largest eigenvalue of the next generation
matrix K̂ . The agreement is ensured by the mathematical
fact that the collapse and the next generation matrices are
connected to each other by the similarity transformation Ĉ =
ŜK̂Ŝ−1 and thus have identical eigenvalues. Here Ŝ = Si(0)δij

is the diagonal matrix of initial species abundances.
In the limit where population collapses in both species

are large (ρ1 ∼ 1 and ρ2 ∼ 1), the Eqs. (2) predict the
logarithm of collapse ratios in each of two populations to
be given by a simple sum of matrix elements of the collapse
matrix: �1 = C11 + C12 and �2 = C21 + C22. In other words,
the overall fraction of survivors exp(−�i) is given by a
product of survival probabilities in infections transmitted by
the members of its own species and those of the opposite
species. This is illustrated by the case of unidirectional
transmission shown in Fig. 1, where the “downstream” species
1 collapses by a factor exp(−10) = exp(−5) exp(−5) =
exp(−C11) exp(−C12), while the “upstream” species 2 col-
lapses only by a factor exp(−5) = exp(−C22). If the disease
was able to spread equally in both directions, both species
would suffer equally large collapses ∼ exp(−10).
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FIG. 2. Decimal logarithm of the collapse ratio
log10[S1(0)/S1(collapse)] = �1/ ln(10) in the population 1 as
a function of the two species population sizes (a) and infections
rates (b). Panel (a) shows the collapse ratio as a function of the
initial populations S1(0) and S2(0) in a system where γ1 = γ2 = 1
and β11 = β12 = 0.3, and β22 = β21 = 3. White line is the predicted
epidemic threshold at which the largest eigenvalue of the collapse
matrix Ĉ is equal to 1. Yellow-to-red colors indicate likely extinction
of the species 1 with the initial population of 105 susceptible
individuals. White dot marks initial population sizes S1(0) = 1 and
S2(0) = 10 used in panel (b), which shows the decimal logarithm
of the collapse ratio calculated for these initial population sizes and
variable infection rates β11 = β12 and β22 = β21. White line marks
the predicted epidemic threshold.

Figures 2 and 3 show the decimal logarithm (as op-
posed to the natural one) of the species 1 collapse ratio
log10[S1(0)/S1(collapse)] = −�1/ ln(10) for different com-
binations of parameters. In Fig. 2, we examine the loga-
rithmic magnitude of the species 1 collapse, as a function
of initial susceptible population sizes of both species [Fig.
2(a)] and (cross)infections rates [Fig. 2(b)]. Figure 2(a)
plots log10[S1(0)/S1(collapse)] as a function of the initial
populations S1(0) and S2(0) in a system where γ1 = γ2 =
1 and β11 = β12 = 0.3, and β22 = β21 = 3. White line is
the predicted epidemic threshold below which the largest
eigenvalue of the collapse matrix Ĉ falls below 1. White dot
marks the population sizes S1(0) = 1 and S2(0) = 10 used
in Fig. 2(b), which shows log10[S1(0)/S1(collapse)] at these
population sizes and variable infection rates β11 = β12 and

FIG. 3. Collapse ratio S1(0)/S1(collapse of the population of
the species 1 in the case of uni-directional transmission: C21 =
0, following an epidemic started with a very small number of
infected individuals [I1(0) = I2(0) = 10−6]. (a) Collapse ratio in the
population of the species 1 with fixed intraspecies collapse factor
C11 = 0.1 as a function of the species 2 collapse number C22 and
cross-species collapse number C12 quantifying disease transmission
from species 2 to 1. White line is the predicted epidemic threshold
below which the overall reproduction number falls below 1. (b)
Collapse ratio the population of species 1, with a fixed value of
C22 = 2 and variable C11 and C12. There is no epidemic threshold in
this case as the basic reproduction number in the species 2 is selected
to be larger than 1 so that the epidemic would always be able to start.

β22 = β21. Note that Figs. 2 and 3 shows the decimal logarithm
of the collapse ratio. Thus, for a population of, for example,
105 individuals, a collapse value greater than 5 (yellow-to-red
colors in our Figs. 2 and 3) indicates a likely local extinction
threshold for species 1 defined by the epidemic reducing the
population to (on average) < 1 surviving individuals.

In general, two host species in our model are character-
ized by different infection parameters and potentially highly
asymmetric transmission rates. For example, for Ebola virus in
bats and gorillas mentioned above [13,14], cross infections are
believed to be mediated primarily by bats’ droppings landing
on fruits that gorillas eat. Thus, the spread of the virus is
generally unidirectional from species 2 (bats) to species 1
(gorillas). In Fig. 1, we simulated our model with β21 = 0. In
Fig. 2, we examine how the magnitude of the postepidemic
drop in population sizes depends on parameters. Figure 2(a)
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shows the dependence of the logarithmic collapse ratio in
the species 1 (gorillas) on the size of the magnitude of
cross-species collapse matrix element C12 = β12S2(0)/γ2 and
the size of intraspecies collapse number C22 within the species
2 (bat) population. To further illustrate our point we selected
the basic collapse number in the population of gorillas to be
well below the species 1 epidemic threshold if it was isolated
from species 2 (C11 = 0.1 � 1). Yet, we were anyway able to
get an extinction-level collapse in the population of “gorillas”
as long as the majority of bats were infected. It is important
to note that our model equally well applies to the case where
species 2 (bats) do not die in the course of the epidemic but
are instead removed from the ranks of susceptible population
by becoming immune to the disease (see the discussion for
generalization of our mathematical formalism to incorporate
recovery with immunity). The species 2 death rate γ2 in this
case is simply the rate at which they acquire immunity and
thus stop being infectious.

The properties of the system can be further analyzed in
terms of a simple analytic expression obtained in the limit
where �1 � 1 and �2 � 1 so that ρ1 � 1 and ρ2 � 1 (strictly
speaking this is the limit of the model where �i, �2 → ∞). In
this case, Eqs. (1) become simply

log

[
S1(0)

S1(collapse)

]
= �1 = C11 + C12

= β11S1(0)

γ1
+ β12S2(0)

γ2
. (4)

This limit approximately describes the simulations shown
in Fig. 1 where the collapse of the first species is very
close to S1(collapse) � exp(−C11 − C22) = exp(−10) (see
blue arrow). Note that the population collapse in the species
1 described by the Eq. (4) does not depend on the impact of
the epidemic on the species 2 population, corresponding to
a near complete elimination of the susceptible population 2
(�2 � 1). This limit can be seen in Fig. 2(a) as leveling off of
the surviving fraction of the species 1 for large values C22 � 1,
corresponding to saturation of the reservoir of the species 2.
Figure 2(b) further explores this limit by plotting �1 as a
function of C11 and C12 for a fixed “bat-to-bat” (within-species
2) collapse factor C22 = 2. In this case a large fraction of the
population 2 [1 − exp(−2) or 86%] becomes infected thus
opening up plentiful opportunities (broad range of two other
parameters of the model) for an extinction-level collapse of
the population 1.

IV. DISCUSSION

Diseases are a real and constant danger for nearly any
of the species on our planet, and are occasionally assumed
to drive or facilitate extinction-scale events [17–19]. This
paper demonstrated that such events would be more likely
when a lethal pathogen infects more than one host species.
Above we explored a simple two species model subject to
epidemic-driven population collapses and extinctions. The
epidemic could be triggered by either the appearance of a
new pathogen or a sudden increase in intra- or cross-species
infection rates in a new ecological layout. As can be inferred
from the Eq. (4) a severe population collapse of the species 1

is favored by an initially large population of the coinfecting
species 2 [large S2(0)] that can stay infectious for a long time
(γ2 small) resulting in a large cross-species collapse number
C12. Cross-species transmission could dramatically amplify
the collapse due to within-species transmission which could
even be characterized by a subcritical value of R0(1 → 1) < 1
(C11 in our notation).

If a population would survive the first epidemic, one may
speculate whether it would be sustainable in the long term
endemic steady state. This was previously considered by
Ref. [10], with the overall result was that coexistence of
two or more species in the endemic steady state depends on
multiple species-specific parameters. According to Ref. [10],
the extinction of species in the endemic state is possible when
intraspecies transmission is high and it targets host species in
the inverse order of their growth rates. That is to say, slowly
growing species will go extinct first when they share pathogens
with faster growing ones. Thus, species survival in the endemic
state of the disease depends on different parameters (growth
rates) than in the initial epidemics (relative population sizes).
Another relevant study [20] explored tradeoffs between overall
host abundance and host species diversity on the steady state
of a multihost disease.

Our study suggests that transient epidemics of diseases pro-
vide species with powerful “weapons” against each other. Such
weapons have been well documented in the microbial world
where bacterial species coinfected by the same phage [21]
fight ongoing battles with each other and their phage pathogen.
Long history of such “red-queen” evolutionary dynamics can
be inferred from many-layered defense and counter-defense
mechanisms encoded within their genomes [22]. The use of
shared diseases as a weapon have similarity to the apparent
competition between multiple prey species sharing a common
predator [23]. Our analysis extends these earlier results by
including the impact of transient epidemics, and adding the
possibility that permanently remove an otherwise fit predator.

An important example of cross-species interactions occurs
when a single pathogen co-infects a highly abundant prey
and its typically much its less abundant predator. Mapping
the prey to species 2 in our model this situation would give
rise to particularly large values of C22 and C12, which are
both proportional to prey’s high population density S2(0). Our
results suggest that such a disease may only need to be present
during a relatively short period, to locally eliminate the less
abundant predator species. Such disease would also result in a
short-term population loss of the prey, but give it a long-term
gain in terms of eliminating the predator entirely. Alternatively,
for the pathogen it would be evolutionary beneficial to be either
completely benign or at least less deadly to its prey host, but
much more lethal to its host’s predators. Indeed, by reducing
predator population it increases prey (and hence its own)
population. Thus in contrast to the classical single host results
of [24,25], our analysis suggests that it is not always beneficial
for a disease to become more benign to all of its hosts.

Diseases often leave a substantial fraction of survivors, and
their epidemics only cause a finite-size collapse in populations
of their hosts. Somewhat counterintuitively this may increase
the diversity of the host ecosystem by allowing hosts to
bypass the competitive exclusion principle, according to
which only the single fastest growing species survives in
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the long run. One example we investigated before [26] is
the negative density-dependent selection in which phage
epidemics preferentially spread in bacterial species or strains
with large populations (so called “Kill-the-Winner” principle
[27]) thereby leading to their abrupt and severe collapse.

Since the focus of this study is on extinction level population
collapses, above we considered an extreme case of a disease
with 100% mortality. Yet our results can be readily extended
to a more general case in which a fixed fraction xi of infected
individuals of species i die, while 1 − xi recover with full
immunity. As was discussed above, for the purposes of the
SIR mathematical model without birth these two outcomes are
identical. Let γi denote the overall rate of death and recovery
with immunity. Out of a fraction 1 − exp(−�i) removed from
the corresponding susceptible population, xi[1 − exp(−�i)]
actually died, while (1 − xi)[1 − exp(−�i)] survived. Thus,
by the end of the first epidemic the overall (both susceptible
and immune) surviving population fraction is given by 1 −
xi + xi exp(−�i), where as before �i is determined by Eq. (2).
Coming back to the bats and gorillas example considered above
one can have a situation in which the Ebola virus is rather
deadly (xi � 1) for one of the species (gorillas), while being
mild in another (xi � 0) (bats [14]). In this case the severe
collapse of the gorilla population continues to be described by
the Eq. (4).

In spite of its simplified well-mixed mass-action kinetics,
our results suggest a way on how to minimize the probability of
a disastrous collapse in human populations. Humans routinely
share pathogens with animals. Indeed, more than half of nearly
1500 known human pathogens are shared with at least one
animal host [2]. Wolfe et al. [3] classified such zoonotic
diseases into 5 categories (called evolutionary stages) out of
which stages 2–4 differ from each other exclusively by their
basic reproduction number in human-to-human transmission
(C11 in our notation). Stage 2 is characterized by a complete
lack of human-to-human transmission (C11 = 0), Stage 3—

by subcritical human-to-human transmission 0 < C11 < 1),
and Stage 4—by supercritical human-to-human transmission
(C11 > 1). Human-to-human basic reproduction number, C11,
is clearly important both for endemic state stability considered
in Ref. [10] as well as for the epidemic-driven population
collapse considered here, especially in the case where the
disease does not spread on its own in their animal host
(C22 < 1). However, as demonstrated in Fig. 2(b), for a
pathogen capable to spread in the coinfected animal [C22 > 1
such as example used in Fig. 2(b)] the human-to-human basic
reproduction number C11 has only mild and qualitative impact
on �1 quantifying the logarithm of the population collapse
in humans. Much more important factor is the magnitude
of the animal-to-human collapse factor C12 = β12S2(0)/γ2. It
is proportional to the population of the animal host, which
could potentially be very large. We are outnumbered by
populations of, for example, small birds, rats, and mice. Our
paper emphasizes the advantage of limiting our exposure to
such species with large populations and high growth rates.
Perhaps much of the recent trend showing the overall decrease
in occurrence of serious epidemics in the industrial world could
be attributed to progressively less frequent contacts between
humans living in major population centers and these animals.
To prevent serious disease outbreaks in the future it may be
particularly useful to closely monitor abundant disease carriers
in regions with high potential for inter-species contacts.
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