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ABSTRACT While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now
recognized as an important contributor to their evolution. However, the details of how the competition between clonality
and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two
principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of
bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to
recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the
divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species
lacks genetic coherence with sexually isolated clonal sub-populations continuously formed and dissolved. In contrast, in
the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination,
genomes continuously recombine with the rest of the population. The population remains genetically cohesive and
temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in
evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data we classify a number of bacterial species
to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically
structured populations, and horizontal gene transfer of non-homologous regions are discussed as well.
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1. Introduction

Bacterial genomes are extremely variable, comprising both a con-
sensus ‘core’ genome which is present in the majority of strains
in a population, and an ‘auxiliary’ genome, comprising genes
that are shared by some but not all strains (MEDINI et al. 2005;
TETTELIN et al. 2005; HOGG et al. 2007; LAPIERRE and GOGA-
RTEN 2009; TOUCHON et al. 2009; DIXIT et al. 2015; MARTTINEN
et al. 2015).

Multiple factors shape the diversification of the core genome.
For example, point mutations generate single nucleotide poly-
morphisms (SNPs) within the population that are passed on
from mother to daughter. At the same time, stochastic elim-
ination of lineages leads to fixation of polymorphisms which
effectively reduces population diversity. The balance between
point mutations and fixation determines the average number of
genetic differences between pairs of individuals in a population,
often denoted by θ.

During the last two decades, exchange of genetic fragments

between closely related organisms has also been recognized
as a significant factor in bacterial evolution (GUTTMAN and
DYKHUIZEN 1994; MILKMAN 1997; FALUSH et al. 2001; THOMAS
and NIELSEN 2005; TOUCHON et al. 2009; VOS and DIDELOT
2009; STUDIER et al. 2009; DIXIT et al. 2015). Transferred frag-
ments are integrated into the recipient chromosome via homolo-
gous recombination. Notably recombination between pairs of
strains is limited by the divergence in transferred regions. The
probability psuccess ∼ e−δ/δTE of successful recombination of for-
eign DNA into a recipient genome decays exponentially with δ,
the local divergence between the donor DNA fragment and the
corresponding DNA on the recipient chromosome (VULIĆ et al.
1997; MAJEWSKI 2001; THOMAS and NIELSEN 2005; FRASER et al.
2007; POLZ et al. 2013). Segments with divergence δ greater than
divergence δTE have negligible probability of successful recombi-
nation. In this work, we refer to the divergence δTE as the transfer
efficiency. δTE is shaped at least in part by the restriction modifi-
cation (RM), the mismatch repair (MMR) systems, and the bio-
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physical mechanisms of homologous recombination (VULIĆ et al.
1997; MAJEWSKI 2001). The transfer efficiency δTE imposes an
effective limit on the divergence among subpopulations that can
successfully exchange genetic material with each other (VULIĆ
et al. 1997; MAJEWSKI 2001).

In this work, we develop an evolutionary theoretical frame-
work that allows us to study in broad detail the nature of com-
petition between recombinations and point mutations across a
range of evolutionary parameters. We identify two composite
parameters that govern how genomes diverge from each other
over time. Each of the two parameters corresponds to a competi-
tion between vertical inheritance of polymorphisms and their
horizontal exchange via homologous recombination.

First is the competition between the recombination rate ρ
and the mutation rate µ. Within a co-evolving population, con-
sider a pair of strains diverging from each other. The average
time between consecutive recombination events affecting any
given small genomic region is 1/(2ρltr) where ltr is the average
length of transferred regions. The total divergence accumulated
in this region due to mutations in either of the two genomes is
δmut ∼ 2µ/2ρltr. If δmut � δTE, the pair of genomes is likely to
become sexually isolated from each other in this region within
the time that separates two successive recombination events. In
contrast, if δmut < δTE, frequent recombination events would
delay sexual isolation resulting in a more homogeneous popula-
tion. Second is the competition between the population diversity
θ and δTE. If δTE � θ, one expects spontaneous fragmentation
of the entire population into several transient sexually isolated
sub-populations that rarely exchange genetic material between
each other. In contrast, if δTE � θ, unhindered exchange of
genetic fragments may result in a single cohesive population.

Using computational models, we show that the two compos-
ite parameters identified above, θ/δTE and δmut/δTE, determine
qualitative evolutionary dynamics of bacterial species. Further-
more, we identify two principal regimes of this dynamics. In
the divergent regime, characterized by a high δmut/δTE, local
genomic regions acquire multiple mutations between successive
recombination events and rapidly isolate themselves from the
rest of the population. The population remains mostly clonal
where transient sexually isolated sub-populations are contin-
uously formed and dissolved. In contrast, in the metastable
regime, characterized by a low δmut/δTE and a low θ/δTE), local
genomic regions recombine repeatedly before ultimately escap-
ing the pull of recombination (hence the name “metastable”). At
the population level, in this regime all genomes can exchange
genes with each other resulting in a genetically cohesive and
temporally stable population. Notably, our analysis suggests
that only a small change in evolutionary parameters can have a
substantial effect on evolutionary fate of bacterial genomes and
populations.

We also show how to classify bacterial species using the con-
ventional measure of the relative strength of recombination over
mutations, r/m (defined as the ratio of the number of single
nucleotide polymorphisms (SNPs) brought by recombinations
and those generated by point mutations in a pair of closely
related strains), and our second composite parameter θ/δTE.
Based on our analysis of the existing MLST data, we find that
different real-life bacterial species belong to either divergent or
metastable regimes. We discuss possible molecular mechanisms
and evolutionary forces that decide the role of recombination
in a species’ evolutionary fate. We also discuss possible exten-
sions of our analysis to include adaptive evolution, effects of

ecological niches, and genome modifications such as insertions,
deletions, and inversions.

2. Computational models

We consider a population of Ne co-evolving bacterial strains.
The population evolves with non-overlapping generations and
in each new generation each of the strains randomly chooses
its parent (GILLESPIE 2010). As a result, the population remains
constant over time. Strain genomes have lG = 5× 106. Indi-
vidual base pairs acquire point mutations at a constant rate µ
and recombination events are attempted at a constant rate ρ (see
panel a) of Figure. 1). The mutations and recombination events
are assumed to have no fitness effects (later, we discuss how this
assumption can be relaxed). The probability of a successful inte-
gration of a donor gene decays exponentially, psuccess ∼ e−δ/δTE ,
with the local divergence δ between the donor and the recipient.
Table 1 lists all important parameters in our model.

Unlike point mutations that occur anywhere on the genome,
genomic segments involved in recombination events have a well
defined starting point and length. In order to understand the
effect of these two factors, below we introduce three variants of
a model of recombination with increasing complexity illustrated
in panel b) of Figure 1. In the first and the only mathematically
tractable model we fix both length and start/end points of re-
combined segments. In the second model, recombined segments
have a fixed length but variable starting/ending positions. Fi-
nally, in the most realistic third model, recombined segments
have variable lengths (drawn from an exponential distribution
with an average of 5000 bp (DIXIT et al. 2015)) and variable start-
ing/ending positions. Prima facie, these three models appear
quite distinct from each other, potentially leading to divergent
conclusions about the distribution of diversity on the genome. In
particular, one might assume that the first model in which differ-
ent segments recombine (and evolve) completely independently
from each other would lead to significantly different evolution-
ary dynamics than the other two models. This assumption was
not confirmed by our numerical simulations. Indeed, later in
the manuscript we demonstrate (see Figure 7 below) that all
three variants of the model have rather similar evolutionary
dynamics. In what follows we first present our mathematical
description and simulations of the first model and then compare
and contrast it to other two models.

The effective population sizes of real bacteria are usually
large (TENAILLON et al. 2010). This prohibits simulations with
realistic parameters wherein genomes of individual bacterial
strains are explicitly represented. In what follows (recombina-
tion model 1) we overcome this limitation by employing an
approach we had proposed earlier DIXIT et al. (2015). It allows
us to simulate the evolutionary dynamics of only two genomes
(labeled X and Y), while representing the rest of the population
using evolutionary theory (DIXIT et al. 2015). X and Y start di-
verging from each other as identical twins at time t = 0 (when
their mother divides). We denote by δi(t), the sequence diver-
gence of the ith transferable unit (or gene) between X and Y at
time t and by ∆(t) = 1/G ∑i δi(t) the genome-wide divergence.

Based on population-genetic and biophysical considerations,
we derive the transition probability E(δa|δb) = 2µM(δa|δb) +
2ρltrR(δa|δb) (a for after and b for before) that the divergence in
any gene changes from δb to δa in one generation (DIXIT et al.
2015). There are two components to the probability, M and R.
Point mutations in either of two strains, represented by M(δa|δb),
occur at a rate 2µ per base pair per generation and increase the



Figure 1 Schematic of the computation models. Panel a) Illustration of the numerical model. Ne bacterial organisms evolve to-
gether, we show only one pair of strains. Point mutations (red circles) occur at a fixed rate µ per base pair generation and genetic
fragments of length ltr are transferred between organisms at a rate ρ per base pair per generation. Panel b) The schematics of the
three models of recombination. In model (1), recombining stretches have fixed end points. As a result, different recombination
tracks do not overlap. In models (2) and (3), the recombining stretches have variable end points and as a result different recombina-
tion tracks can potentially overlap with each other.

Figure 2 Three possible outcomes of gene transfer that
change the divergence δ. XD, YD, XY, and XYD are the most
recent common ancestors of the strains. The divergence δb be-
fore transfer and δa after transfer are shown in red and blue
respectively.

divergence in a gene by 1/ltr. Hence when δa 6= δb,

M(δa|δb) = 2µ if δa = δb + 1/ltr and (1)

M(δb|δb) = 1− 2µ. (2)

We assume, without loss of generality, that recombination
from donor strain D replaces a gene on strain X. Unlike point
mutations, after a recombination, local divergence between
X and Y can change suddenly, taking values either larger or
smaller than the current divergence (see Figure 2 for an illustra-
tion) (DIXIT et al. 2015). We have the probabilities R(δa|δb) (DIXIT
et al. 2015),

R(δa|δb) =
1
Ω

1− e−
δb

δTE
− 2δb

θ

2 + θ/δTE
if δa = δb

R(δa|δb) =
1
Ω

e−
2δa

θ −
δb

δTE

θ
if δa < δb and

R(δa|δb) =
1
Ω

e−
δa

δTE
− δa+δb

θ

θ
if δa > δb. (3)

In Eqs. 3, Ω is the normalization constant.

3. Computational analysis of the simplified model of re-
combination

A. Evolutionary dynamics of local divergence has large fluc-
tuations

Figure 3 shows a typical stochastic evolutionary trajectory of the
local divergence δ(t) of a single gene in a pair of genomes simu-
lated using E(δa|δb). We have used realistic values of θ = 1.5%
and δTE = 1% (FRASER et al. 2007; DIXIT et al. 2015). Mutation
and recombination rates (per generation) in real bacteria are ex-
tremely small (DIXIT et al. 2015). In order to keep the simulation
times manageable, mutation and recombination rates used in
our simulations were 4− 5 orders of magnitude higher com-
pared to those observed in real bacteria (µ = 10−5 per base pair
per generation and ρ = 5× 10−6 per base pair per generation,
δmut/δTE = 0.04) (OCHMAN et al. 1999; WIELGOSS et al. 2011)
while keeping the ratio of the rates realistic (TOUCHON et al.
2009; VOS and DIDELOT 2009; DIDELOT et al. 2012; DIXIT et al.
2015). Alternatively, one may interpret it as one time step in our
simulations being considerably longer than a single bacterial
generation.

As seen in Figure 3, the time evolution of δ(t) is noisy; muta-
tional drift events that gradually increase the divergence linearly
with time (red) are frequently interspersed with homologous
recombination events (green if they increase δ(t) and blue if
they decrease it) that suddenly change the divergence to typi-
cal values seen in the population (see Eq. 3). Eventually, either
through the gradual mutational drift or a sudden recombination
event, δ(t) increases beyond the integration barrier set by the
transfer efficiency, δ(t)� δTE. Beyond this point, this particular
gene in our two strains splits into two different sexually isolated
sub-clades. Any further recombination events in this region
would be limited to their sub-clades and thus would not further
change the divergence within this gene. At the same time, the
mutational drift in this region will continue to drive the two
strains further apart indefinitely.

In Figure 4, we plot the time evolution of ∆(t) and its ensem-
ble average 〈∆(t)〉 (as % difference). We have used θ = 0.25%,
δTE = 1%, and δmut/δTE = 2, 0.2, 0.04, and 2× 10−3 respectively.
As seen in Figure 4, when δmut/δTE is large, in any local genomic
region, multiple mutations are acquired between two successive
recombination events. Consequently, individual genes escape



parameter symbol

population diversity θ = 2µNe (0.1%− 3.16%)

mutation rate µ (2× 10−6 per base pair per generation)

recombination rate ρ (2× 10−9 − 2× 10−5 per base pair per generation)

transfer efficiency δTE (0.5%− 5%)

length of transferred regions ltr (5000 base pairs)

number of transferable units G (1000)

Table 1 A list of parameters in the model. The range of values used in this study are indicated in the parentheses.

Figure 3 Stochastic evolution of local divergence. A typical
evolutionary trajectory of the local divergence δ(t) within
a single gene between a pair of strains. We have used µ =
10−5, ρ = 5 × 10−6 per gase pair per generation, θ = 1.5%
and δTE = 1%. Red tracks indicate the divergence increasing
linearly, at a rate 2µ per base pair generation, with time due to
mutational drift. Green tracks indicate recombination events
that suddenly increase the divergence and blue tracks indicate
recombination events that suddenly decrease the divergence.
Eventually, the divergence increases sufficiently and the local
genomic region escapes the pull of recombination (red stretch
at the right).

Figure 4 Stochastic evolution of genome-wide divergence.
Genome-wide divergence ∆(t) as a function of time at
θ/δTE = 0.25. We have used δTE = 1%, θ = 0.25%, µ = 2× 10−6

per base pair per generation and ρ = 2× 10−8, 2× 10−7, 10−5,
and 2× 10−5 per base pair per generation corresponding to
δmut/δTE = 2, 0.2, 0.04 and 2× 10−3 respectively. The dashed
black lines represent the ensemble average 〈∆(t)〉. See Fig-
ure A1 in the appendix for the evolution of ∆(t) over a longer
time scale.

the pull of recombination rapidly and 〈∆(t)〉 increases roughly
linearly with time at a rate 2µ. For smaller values of δmut/δTE,
the rate of change of 〈∆(t)〉 in the long term decreases as many
of the individual genes repeatedly recombine with the popula-
tion. However, even then the fraction of genes that have escaped
the integration barrier slowly increases over time, leading to a
linear increase in 〈∆(t)〉 with time albeit with a slope different
than 2µ. Thus, the repeated resetting of individual δ(t)s after
homologous recombination (see Figure 3) generally results in a
〈∆(t)〉 that increases linearly with time.

At the shorter time scale, the trends in genome divergence
are opposite to those at the longer time scale. At a fixed θ, a
low value of δmut/δTE implies faster divergence and vice versa.
When recombination rate is high, genomes of strains quickly
‘equilibrate’ with the population and the genome-wide average
divergence between a pair of strains reaches the population av-
erage diversity ∼ θ (see the red trajectory in Figure 4). From
here, any new mutations that increase the divergence are con-
stantly wiped out through repeated recombination events with
the population.



Computational algorithms that build phylogenetic trees from
multiple sequence alignments often rely on the assumption that
the sequence divergence faithfully represents the time that has
elapsed since their Most Recent Common Ancestor (MRCA).
However, Figure 3 and Figure 4 serve as a cautionary tale. No-
tably, after just a single recombination event the local divergence
at the level of individual genes does not at all reflect time elapsed
since divergence but rather depends on statistics of divergence
within a recombining population (see DIXIT et al. (2015) for more
details). At the level of genomes, when δmut/δTE is large (e.g. the
blue trajectory in Figure 4), the time since MRCA of two strains
is directly correlated with the number of mutations that separate
their genomes. In contrast, when δmut/δTE is small (see pink
and red trajectories in Figure 4), frequent recombination events
repeatedly erase the memory of the clonal ancestry. Nonetheless,
individual genomic regions slowly escape the pull of recombi-
nation at a fixed rate. Thus, the time since MRCA is reflected
not in the total divergence between the two genomes but in the
fraction of the length of the total genomes that has escaped the
pull of recombination. One will have to use a very different rate
of accumulation of divergence to estimate evolutionary time
from genome-wide average divergence.

B. Quantifying metastability

How does one quantify the metastable behavior described
above? Figure 4 suggests that high rates of recombination pre-
vent pairwise divergence from increasing beyond the typical
population divergence ∼ θ at the whole-genome level. Thus,
for any set of evolutionary parameters, µ, ρ, θ, and δTE, the time
it takes for a pair of genomes to diverge far beyond the typical
population diversity θ can serve as a quantifier for metastability.

In Figure 5, we plot the number of generations tdiv (in units
of the effective population size Ne) required for the ensem-
ble average of the genome-wide average divergence 〈∆(t)〉 be-
tween a pair of genomes to exceed 2× θ (twice the typical intra-
population diversity) as a function of θ/δTE and δmut/δTE. Ana-
lyzing the ensemble average 〈∆(t)〉 (represented by dashed lines
in Figure 4) allows us to avoid the confounding effects of small
fluctuations in the stochastic time evolution of ∆(t) around this
average. Note that in the absence of recombination, it takes
tdiv = 2Ne generations before 〈∆(t)〉 exceeds 2θ = 4µNe. The
four cases explored in Figure 4 are marked with green diamonds
in Figure 5.

We observe two distinct regimes in the behavior of tdiv as a
function of θ/δTE and δmut/δTE. In the divergent regime, after
a few recombination events, the divergence δ(t) at the level of
individual genes quickly escapes the integration barrier and
increases indefinitely. Consequently, 〈∆(t)〉 increases linearly
with time (see e.g. δmut/δTE = 2 in Figure 4 and Figure 5) and
reaches 〈∆(t)〉 = 2θ within ∼ 2Ne generations. In contrast for
smaller values of δmut/δTE in the metastable regime, it takes
extremely long time for 〈∆(t)〉 to reach 2θ. In this regime genes
get repeatedly exchanged with the rest of the population and
〈∆(t)〉 remains nearly constant over long periods of time (see e.g.
δmut/δTE = 2× 10−3 in Figure 4 and Figure 5). Notably, near the
boundary region between the two regimes a small perturbation
in the evolutionary parameters could change the evolutionary
dynamics from divergent to metastable and vice versa.

Do the conclusions about the transition between divergent
and metastable dynamics depend on the particular choice of
δTE = 1%? In the appendix Figure. A2, we show that in fact
the transition is independent of δTE and is fully determiend by

Figure 5 Quantifying metastability in genome evolution.
The number of generations tdiv (in units of the population
size Ne) required for a pair of genomes to diverge well beyond
the average intra-population diversity (see main text). We cal-
culate the time it takes for the ensemble average 〈∆(t)〉 of the
genome-wide average divergence to reach 2θ as a function of
θ/δTE and δmut/δTE. We used δTE = 1%, µ = 2× 10−6 per base
pair generation. In our simulations we varied ρ and θ to scan
the (θ/δTE, δmut/δTE) space. The green diamonds represent
four populations shown in Figure 4 and Figure 6 (see below).

the two evolutionary non-dimensional parameters θ/δTE and
δmut/δTE identified in this study.

C. Population structure: the distribution of pairwise diver-
gences of genomes within a population

Can we understand the phylogenetic structure of the entire pop-
ulation by studying the evolutionary dynamics of just a single
pair of strains?

Given sufficient amount of time every pair of genomes in our
model would diverge indefinitely (see Figure 4). However, in a
finite population of size Ne, the average probability of observ-
ing a pair of strains whose MRCA existed t generations ago is
exponentially distributed, pc(t) ∼ e−t/Ne (here and below we
use the bar to denote averaging over multiple realizations of
the coalescent process, or long-time average over population
dynamics) (KINGMAN 1982; HIGGS and DERRIDA 1992; SERVA
2005). Thus, it becomes more and more unlikely to find such a
pair in a finite-sized population.

Let π(∆) to denote the probability distribution of ∆ for all
pairs of genomes in a given population, while π(∆) stands for
the same distribution averaged over long time or multiple real-
izations of the population. One has

π(∆) =
∫ ∞

0
pc(t)× p(∆|t)dt and

π(∆) =
∫ ∞

0
pc(t)× p(∆|t)dt

=
1

Ne

∫ ∞

0
e−t/Ne × p(∆|t)dt (4)

In Eq. 4, pc(t) is the probability that a pair of strains in a popula-
tion snapshot shared their MRCA t generations ago and p(∆|t)
is the probability that a pair of strains have diverged by ∆ at
time t. Given that ∆(t) is the average of G � 1 independent



Figure 6 Distribution of genome-wide divergences in a pop-
ulation. Distribution of all pairwise genome-wide diver-
gences δij in a co-evolving population for decreasing values
of δmut/δTE: 2 in a), 0.2 in b), 0.04 in c) and 0.002 in d) In all
4 panels, dashed black lines represent time-averaged distri-
butions π(∆), while solid lines represent typical “snapshot”
distributions π(∆) in a single population. Colors of solid lines
match those in Figure 4 for the same values of parameters.
Time-averaged and snapshot distributions were estimated
by sampling 5× 105 pairwise coalescent times from the time-
averaged coalescent distribution p ∼ e−t/Ne and the instanta-
neous coalescent distribution pc(t) correspondingly (see text
for details).

realizations of δ(t), we can approximate p(∆|t) as a Gaussian
distribution with average 〈δ(t)〉G =

∫
δ× p(δ|t)dδ and variance

σ2 = 1
G
(
〈δ(t)2〉G − 〈δ(t)〉2G

)
. Here and below angular brackets

and the subscript G denote the average of a quantity over the
entire genome.

Unlike the time- or realization- averaged distribution π(∆),
only the instantaneous distribution π(∆) is accessible from
genome sequences stored in databases. Notably, even for large
populations these two distributions could be significantly dif-
ferent from each other. Indeed, pc(t) in any given population
is extremely noisy due to multiple peaks from clonal subpop-
ulations and does not resemble its smooth long-time average
profile pc(t) ∼ e−t/Ne (HIGGS and DERRIDA 1992; SERVA 2005).
In panels a) to d) of Figure 6, we show π(∆) for the four cases
shown in Figure 4 (also marked by green diamonds in Figure 5).
We fixed the population size to Ne = 500. We changed δmut/δTE
by changing the recombination rate ρ. The solid lines represent
a time snapshot obtained by numerically sampling pc(t) in a
Fisher-Wright population of size Ne = 500. The dashed black
line represents the time average π(∆).

In the divergent regime of Figure 5 the instantaneous snap-
shot distribution π(∆) has multiple peaks corresponding to
divergence distances between several spontaneously formed
clonal sub-populations present even in a homogeneous popu-
lation. These sub-populations rarely exchange genetic material
with each other, because of a low recombination frequency ρ.
In this regime, the time averaged distribution π(∆) has a long
exponential tail and, as expected, does not agree with the instan-
taneous distribution π(∆).

Notably, in the metastable regime the exponential tail shrinks
into a Gaussian-like peak. The width of this peak relates to fluc-
tuations in ∆(t) around its mean value which in turn are depen-

dent on the total number of genes G. Moreover, the difference
between the instantaneous and the time averaged distributions
diminishes as well. In this limit, all strains in the population
exchange genetic material with each other. Consequently, the
population becomes genetically cohesive and temporally stable.

4. Comparison between three models of recombination

So far, we presented results from a simplified model of recombi-
nation (model 1, see Figure 1). Employing this model allowed us
to develop a mathematical formalism to describe evolutionary
dynamics of a pair of bacterial genomes in a co-evolving popu-
lation. It also allowed us to investigate how genomes diversify
across a range of evolutionary parameters in a computationally
efficient manner. However, in real bacteria, transfer events have
variable lengths and partially overlap with each other (MILK-
MAN 1997; FALUSH et al. 2001; VETSIGIAN and GOLDENFELD
2005; DIXIT et al. 2015).

Here, we systematically study the similarities and differences
between the three progressively more realistic models described
in section COMPUTATIONAL MODELS and (illustrated in Fig-
ure 1 panel b). In order to directly compare results across differ-
ent types of simulations, we ran each of the three simulations
for the four parameter sets used in Figure 4. See appendix for
details of the simulations.

The metastability/divergent transition (see Figure 5 above) is
based on the dynamics of the ensemble average 〈∆(t)〉. We stud-
ied how 〈∆(t)〉 depends on the nature of recombination with an
explicit simulation of Ne = 250 co-evolving strains each with
Lg = 106 base pairs. Panel a of Figure 7 shows the time evolu-
tion of the ensemble average 〈∆(t)〉 estimated from the explicit
simulations. The three colors represent three different models of
recombination. Notably, 〈∆(t)〉 is insensitive to whether recom-
bination tracks are of variable length or overlapping with each
other. Since metastability depends on 〈∆(t)〉, the conclusions
about metastability obtained using recombination model (1) can
be generalized to more realistic models (2) and (3).

Can the effects of allowing overlapping recombination tracks
be seen in population structure? To investigate this, we looked
at the stochastic fluctuations in ∆(t) around 〈∆(t)〉. Intuitively,
overlapping recombination events are expected to homogenize
highly divergent genetic fragments in the population. As a re-
sult, we expect smaller within-population variation i.e. smaller
fluctuations in ∆(t) around 〈∆(t)〉. We tested this by studying
the expected distribution π̄(∆) of pairwise genome-wide diver-
gences within a population (note the above discussion of differ-
ence between average π̄(∆) and the distribution π(∆) within a
sample population) for the three models of recombination.

We only consider the case where δmut/δTE = 0.002. As seen
in Figure 4 and panel a) of Figure 7, in the metastable state the
divergence ∆(t) virtually does not increase as a function of t at
long times (the rate of increase is extremely slow). Thus, the vari-
ance in π̄(∆) largely represents the variance in ∆(t) around its
ensemble average 〈∆(t)〉. In panel b) of Figure 7, we show π̄(∆)
for the three different models of recombination. Indeed, the vari-
ance in π̄(∆) is much smaller when overlapping recombination
events are allowed (models (2) and (3) compared to model (1)).
The effect of varying the length of recombined segments appears
to be minimal.

5. Application to real-life bacterial species

Where are real-life bacterial species located on the divergent-
metastable diagram? Instead of δmut/δTE, population genetic



Figure 7 Comparison of different models of recombination. a) The ensemble average 〈∆(t)〉 of pairwise genome-wide divergence
∆(t) as a function of the pairwise coalescent time t in explicit simulations. Model (1) simulations have non-overlapping transfers of
segments of length is 5000 bp. Model (2) simulations have transfers of overlapping 5000 bp segments. Model (3) simulations have
overlapping transfer of segnebts if average length 5000 bp. The value of δmut/δTE are on the right side. b) The ensemble average
distribution of genome-wide divergence between pairs of strains π̄(∆) for the three models recombination shown in panel a of
Figure 1 when δmut/δTE = 0.002.

studies of bacteria usually quantify the relative strength of re-
combination over mutations as r/m, the ratio of the number of
SNPs brought in by recombination relative to those generated by
point mutations in a pair of closely related strains (GUTTMAN
and DYKHUIZEN 1994; VOS and DIDELOT 2009; DIXIT et al. 2015).
In our framework, r/m is defined as r/m = ρsucc/µ× ltr × δtr
where ρsucc < ρ is the rate of successful recombination events
and δtr is the average divergence in transferred regions. Both
ρsucc and δtr depend on the evolutionary parameters (see ap-
pendix for a detailed description of our calculations). r/m is
closely related (but not equal) to the inverse of δmut/δTE used in
our previous plots.

In Figure 8, we re-plotted the “phase diagram” shown in
Figure 5 in terms of θ/δTE and r/m and approximately placed
several real-life bacterial species on it. To this end we estimated
θ from the MLST data (JOLLEY and MAIDEN 2010) (see appendix
for details) and used r/m values that were determined previ-
ously by Vos and Didelot (VOS and DIDELOT 2009). As a first
approximation, we assumed that the transfer efficiency δTE is
the same for all species considered and is given by δTE ∼ 2.26%
used in Ref. (FRASER et al. 2007). However, as mentioned above,
the transfer efficiency δTE depends in part on the RM and the
MMR systems. Given that these systems vary a great deal across
bacterial species including minimal barriers to recombination
observed e.g. in Helicobacter pylori (FALUSH et al. 2001) or dif-
ferent combinations of multiple RM systems reported in Ref.
(OLIVEIRA et al. 2016). We note that Helicobacter pylori appears
divergent even with minimal barriers to recombination probably
because of its ecologically structured population that is depen-
dent on human migration patterns (THORELL et al. 2017). One
expects transfer efficiency δTE might also vary across bacteria.
Further work is needed to collect the extent of this variation in a
unified format and location. One possible bioinformatics strat-
egy is to use the slope of the exponential tail in SNP distribution
(p(δ|∆) in our notation) to infer the transfer efficiency δTE as
described in Ref. DIXIT et al. (2015).

Figure 8 confirms that both r/m and θ/δTE are important

evolutionary parameters and suggests that each of them alone
cannot fully classify a species as either divergent or metastable.
Notably, there is a sharp transition between the divergent and
the metastable phases implying that a small change in r/m or
θ/δTE can change the evolutionary fate of the species. And
finally, one can see that different bacterial species use diverse
evolutionary strategies straddling the divide between these two
regimes.

Can bacteria change their evolutionary fate? There are mul-
tiple biophysical and ecological processes by which bacterial
species may move from the metastable to the divergent regime
and vice versa in Figure 5. For example, if the effective popula-
tion size remains constant, a change in mutation rate changes
both δmut/δTE as well as θ. A change in the level of expres-
sion of the MMR genes, changes in types or presence of MMR,
SOS, or restriction-modification (RM) systems, loss or gain of
co-infecting phages, all could change δTE or the rate of recom-
bination (VULIĆ et al. 1997; OLIVEIRA et al. 2016) thus changing
the placement of the species on the phase diagram shown in
Figure 8.

Adaptive and ecological events should be inferred from pop-
ulation genomics data only after rejecting the hypothesis of neu-
tral evolution. However, the range of behaviors consistent with
the neutral model of recombination-driven evolution of bacterial
species was not entirely quantified up till now, leading to poten-
tially unwarranted conclusions as illustrated in (KRAUSE and
WHITAKER 2015). Consider E. coli as an example. Known strains
of E. coli are usually grouped into 5-6 different evolutionary
sub-clades (groups A, B1, B2, E1, E2, and D). It is thought that
inter-clade sexual exchange is lower compared to intra-clade ex-
change (DIDELOT et al. 2012; DIXIT et al. 2015). Ecological niche
separation and/or selective advantages are usually implicated
as initiators of such putative speciation events (POLZ et al. 2013).
In our previous analysis of 32 fully sequenced E. coli strains,
we estimated θ/δTE > 3 and r/m ∼ 8− 10 (DIXIT et al. 2015)
implying that E. coli resides deeply in the divergent regime in Fig-
ure 8. Thus, based on the analysis presented above one expects



Figure 8 Classifying real bacteria as metastable or divergent.
Approximate position of several real-life bacterial spaces on
the metastable-divergent phase diagram (see text for details).
Abbreviations of species names are as follows: FP: Flavobac-
terium psychrophilum, VP: Vibrio parahaemolyticus, SE: Salmonella
enterica, VV: Vibrio vulnificus, SP1: Streptococcus pneumoniae,
SP2: Streptococcus pyogenes, HP1: Helicobacter pylori, HP2:
Haemophilus parasuis, HI: Haemophilus influenzae, BC: Bacillus
cereus, EF: Enterococcus faecium, and EC: Escherichia coli.

E. coli strains to spontaneously form transient sexually-isolated
sub-populations even in the absence of selective pressures or
ecological niche separation.

6. Extending the framework to incorporate selection
and other factors modulating recombination

Throughout this study we used two assumptions that allowed ef-
ficient mathematical analysis: i) exponentially decreasing proba-
bility of successful integration of foreign DNA, psuccess ∼ e−δ/δTE

and ii) exponentially distributed pairwise coalescent time distri-
bution of a neutrally evolving well-mixed population. Here we
discuss how to relax these assumptions within our framework.

(i) A wide variety of barriers to foreign DNA entry exist in
bacteria (THOMAS and NIELSEN 2005). For example, bacteria
may have multiple RM systems that either act in combination or
are turned on and off randomly (OLIVEIRA et al. 2016). Moreover,
rare non-homologous/illegitimate recombination events can
transfer highly diverged segments between genomes (THOMAS
and NIELSEN 2005) potentially leading to homogenization of
the population. Such events can be captured by a weaker-than-
exponential dependence of the probability of successful integra-
tion on local genetic divergence (see Appendix for a calculation
with non-exponential dependence of the probability of success-
ful integration psuccess on the local sequence divergence). One
can incorporate these variations within our framework by ap-
propriately modifying psuccess in the framework.

(ii) Bacteria belong to ecological niches defined by environ-
mental factors such as availability of specific nutrient sources,
host-bacterial interactions, and geographical characteristics. Bac-
teria in different niches may rarely compete with each other
for resources and consequently may not belong to the same ef-
fective population and may have lowered frequency of DNA
exchange compared to bacteria sharing the same niche. How can

one capture the effect of ecological niches on genome evolution?
Geographically and/or ecologically structured populations ex-
hibit a coalescent structure (and thus a pairwise coalescence
time distribution) that depends on the nature of niche separa-
tion (TAKAHATA 1991; WAKELEY 2004). Within our framework,
niche-related effects can be incorporated by accounting for pair-
wise coalescent times of niche-structured populations (TAKA-
HATA 1991; WAKELEY 2004) and niche dependent recombination
frequencies. For example, one can consider a model with two
or more subpopulations with different probabilities for intra-
and inter-population DNA exchange describing geographical or
phage-related barriers to recombination.

While most point mutations are thought to have insignif-
icant fitness effect, the evolution of bacterial species may be
driven by rare advantageous mutations (MAJEWSKI and CO-
HAN 1999). Recombination is thought to be essential for bacterial
evolution in order to minimize the fitness loss due to Muller’s
ratchet (TAKEUCHI et al. 2014) and to minimize the impact of
clonal interference (COOPER 2007). Thus, it is likely that both
recombination frequency and transfer efficiency are under selec-
tion (TAKEUCHI et al. 2014; LOBKOVSKY et al. 2016; IRANZO et al.
2016). How could one include fitness effects in our theoretical
framework? Above, we considered the dynamics of neutrally
evolving bacterial populations. The effective population size
is incorporated in our framework only via the coalescent time
distribution exp(−T/Ne) and consequently the intra-species di-
versity exp(−δ/θ) (see supplementary materials). Neher and
Hallatschek (NEHER and HALLATSCHEK 2013) recently showed
that while pairwise coalescent times in adaptive populations
are not exactly exponentially distributed, this distribution has a
pronounced exponential tail with an effective population size Ne
weakly related to the actual census population size and largely
determined by the variance of mutational fitness effects (NEHER
and HALLATSCHEK 2013). In order to modify the recombina-
tion kernel R(δa|δb) one needs to know the 3-point coalescence
distribution for strains X, Y, and the donor strain D (see Sup-
plementary Materials here and in Ref. DIXIT et al. (2015) for
details). Once such 3-point coalescence distribution is available
in either analytical or even numerical form our results could be
straightforwardly generalized for adaptive populations (assum-
ing most genes remain neutral). We expect the phase diagram of
thus modified adaptive model to be similar to its neutral prede-
cessor considered here, given that the pairwise coalescent time
distribution in adaptive population has an exponential tail as
well (NEHER and HALLATSCHEK 2013), and for our main results
to remain qualitatively unchanged.

7. Conclusion

While recombination is now recognized as an important con-
tributor to patterns of genome diversity in many bacterial
species(GUTTMAN and DYKHUIZEN 1994; MILKMAN 1997;
FALUSH et al. 2001; THOMAS and NIELSEN 2005; TOUCHON et al.
2009; VOS and DIDELOT 2009; DIXIT et al. 2015), its effect on pop-
ulation structure and stability is still heavily debated (FRASER
et al. 2007; WIEDENBECK and COHAN 2011; DOOLITTLE 2012;
POLZ et al. 2013; SHAPIRO et al. 2016). In this work, we explored
three models of gene transfers in bacteria to study how the com-
petition between mutations and recombinations affects genome
evolution. Analysis of each of the three models showed that
recombination-driven bacterial genome evolution can be under-
stood as a balance between two competing processes. We iden-
tified the two dimensionless parameters θ/δTE and δmut/δTE



that dictate this balance and result in two qualitatively different
regimes in bacterial evolution, separated by a sharp transition.

The two competitions give rise to two regimes of genome
evolution. In the divergent regime, recombination is insufficient
to homogenize genomes leading to a temporally unstable and
sexually fragmented species. Notably, understanding the time
course of divergence between a single pair of genomes allows
us to study the structure of the entire population. Species in the
divergent regime are characterized by multi-peaked clonal pop-
ulation structure. On the other hand, in the metastable regime,
individual genomes repeatedly recombine genetic fragments
with each other leading to a sexually cohesive and temporally
stable population. Notably, real bacterial species appear to be-
long to both of these regimes as well as in the cross-over region
separating them from each other.
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A1. Appendix

A. 〈∆(t)〉 from computer simulations
To compare the three models of recombination, we performed
three types of explicit simulations of a Fisher-Wright popula-
tion of Ne = 250 co-evolving strains. The three simulations
had different modes of gene transfers as indicated in panel
b of Figure 1. Each strain had Lg = 106 base pairs. Each
base pair was represented either by a 0 (wild type) or 1 (mu-
tated). The mutation rate was fixed at µ = 5 × 10−6 per
base pair per generation. We varied the recombination rate
ρ = 2.5× 10−8, 2.5× 10−7, 1.25× 10−6, and 2.5× 10−5 per base
pair per generation. θ was fixed at θ = 0.25% and δTE was
fixed at δTE = 1%. These parameters are identical to the ones
used in Figure 4 of the main text. We note that given the low
population diversity (θ = 0.25%), we can safely neglect back
mutations. Note that in all three simulations, on an average, a
total of 5 kilobase pairs of genome was transferred in a success-
ful transfer event thereby allowing us to directly compare the
three simulations.

We strated the simulations with Ne identical genomes. We
ran a Fisher-Wright simulation for 5000 = 20× Ne generations
to ensure that the population reached a steady state. In each
generation, children chose their parents randomly. This ensured
that the population size remained constant over time. Mutation
and recombination events were attempted according to the cor-
responding rates. Note that it is non-trivial to keep track of the
divergence between individual pairs over time since one or both
of the strains in the pair may either be stochastically eliminated.
To study the time evolution of the ensemble average 〈∆(t)〉 of
the divergence, at the end of the simulation, we collected the
pairwise coalescent times t between all pairs of strains as well
as ∆(t), the genomic divergences between them. Note that due
to the stochastic nature of mutations and recombination events,
∆(t) is a random variable. We estimated the ensemble average
〈∆(t)〉 by binning the pairwise coalescent times in intervals of
dt = 25 generations (1/10th of the population size) and taking
an average over all ∆(t) in each bin. The ensemble average thus
estimated represents the average over multiple realizations of
the coalescent process. Mathematically, the ensemble average is
given by

〈∆(t)〉 =
∫

∆(t)p(∆|t)d∆ (A1)

Here, p(∆|t) is the probability that the genomes of two strains
whose most recent common ancestor was t generations ago have
diverged by ∆. We note that the variance in ∆(t) is expected
to be small since it is an average over a large number of genes.
These results are plotted in Figure 7.

B. Behavior of 〈∆(t)〉 in the long time limit
In Figure A1 we show how 〈∆(t)〉 increases with t over a longer
range of times. We note that it is exponentially rarer to find a
pair of strains in a population that have diverged beyond t > Ne
generations where Ne is the population size.

C. Transition between metastable and divergent dynamics
doesn’t depend on the choice of δTE

In Figure 5 in the main text, we showed the transition between
metastable and divergent evolutionary dynamics. There, we
fixed δTE = 1% and varied θ and ρ to scan the space of non-
dimensional parameters θ/δTE and δmut/δTE. However, our
results do not depend on this particular value of δTE. To show

Figure A1 Genome-wide divergence ∆(t) as a function of
time at θ/δTE = 0.25. We have used δTE = 1%, θ = 0.25%,
µ = 2 × 10−6 per base pair per generation and ρ = 2 ×
10−8, 2× 10−7, 10−5, and 2× 10−5 per base pair per genera-
tion corresponding to δmut/δTE = 2, 0.2, 0.04 and 2 × 10−3

respectively. The dashed black lines represent the ensemble
average 〈∆(t)〉. The cyan lines show the time it takes for the
ensemble-averaged genomic divergence 〈∆(t)〉 to reach 2θ
when δmut/δTE = 0.04 (pink line).

this, we recalculated Figure 5 by randomly sampling θ (between
0.5% to 3%), δTE (between 0.5% to 5%), and ρ (between 2 ×
10−7 and 2× 10−5 per base pair per generation) while keeping
the mutation rate constant at µ = 2× 10−5 per base pair per
generation. In Figure A2 below, we plot the time tdiv required for
the ensemble average genome wide divergence 〈∆(t)〉 to reach
an atypical value of 2θ. From Figure A2, it is clear that the time
taken to reach 2θ indeed is determined by the two dimensionless
constants θ/δTE and δmut/δTE and not by the particular choice
of the value of δTE.

D. Estimating r/m from model parameters
As mentioned in the main text, r/m is defined in a pair of strains
as the ratio of SNPs brought in by recombination events and the
SNPs brought in by point mutations. Clearly, r/m will depend
on a strain-to-strain comparison however, usually it is reported
as an average over all pairs of strains. How do we compute r/m
in our framework? We have

r/m = ρsucc/µ× ltr × δtr (A2)

Thus, in order to compute r/m, we need two quantities.
First, we need to compute the rate of successful recombinations
ρsucc < ρ. We can calculate ρsucc as

ρsucc =
∫ ∫ 1

Ne
ρe−t/Ne × psucc(δ)p(δ|t)dδdt (A3)

where psucc is the success probability that a gene that has di-
verged by δ will have a successful recombination event. The
integration over exponentially distributed pairwise coalescent
times averages over the population. psucc can be computed from
Eq. 3 by integrating over all possible scenarios of successful
recombinations. We have

psucc(δ) = e−
δ∗ (2+θ∗ )

θ∗ ×
(

1
1 + 3θ∗ + θ∗ × θ∗

− 1
2

)
+

e−δ∗

2
+

1
2 + θ∗

(A4)



Figure A2 The number of generations tdiv (in units of the pop-
ulation size Ne) required for a pair of genomes to diverge well
beyond the average intra-population diversity. We calculate
the time it takes for the ensemble average of the genome-wide
average divergence to reach 2θ as a function of θ/δTE and
δmut/δTE. We randomly sample θ (between 0.5% to 3%), δTE
(between 0.5% to 5%), and ρ (between 2× 10−7 and 2× 10−5

per base pair per generation) while keeping the mutation rate
constant at µ = 2× 10−5 per base pair generation.

where δ∗ = δ/δTE and θ∗ = θ/δTE are normalized divergences
and p(δ|t) is the distribution of local divergences at time t.
In practice, r/m can only estimated by analyzing statistics of
distribution of SNPs on the genomes of closely related strain
pairs where both clonally inherited and recombined parts of
the genome can be identified (DIDELOT et al. 2012; DIXIT et al.
2015). Here, we limit the time-integration in Eq. A3 to times
t < min(Ne = θ/2µ, δTE/2µ).

Second, we need to compute the average divergence in trans-
ferred segments, δtr. We have

δtr =
1

Ne

∫ ∫
e−t/Ne × δt(δ)p(δ|t)dtdδ (A5)

where δt(δ) is the average divergence after a recombination
event if the divergence before transfer was δ.

E. Computing θ from MLST data
Except for E. coli where we used our previous analysis (DIXIT
et al. 2015) (we used θ/δTE ∼ 3 and r/m = 12), we down-
loaded MLST sequences of multiple organisms from the MLST
database (JOLLEY and MAIDEN 2010). For each of the 7 genes
present in the MLST database, we performed a pairwise align-
ment between strains. For a given pair of strains, we evaluated
the % nucleotide difference in each gene and estimated the av-
erage q over these 7 pairwise differences. The θ for the species
was estimated as an average of q over all pairs of strains.

F. Non-exponential dependence of psuccess on local sequence
divergence

In the main text, we showed that when psucess decays expo-
nentially with the local divergence, the time evolution of local
divergence δ(t) shows metastability. When the recombination
rate is low, a few recombination events take place that change
δ(t) to typical values in the population before the local region
eventually escapes the integration barrier, leading to a linear

increase in δ(t) (see Figure 3). When the recombination rate is
high, the number of recombination events before the eventual
escape from the integration barrier increases drastically leading
to metastable behavior.

Here, we suggest that weaker-than-exponential dependence
of psuccess can lead to a time evolution of local divergence δ(t)
that never escapes the integration barrier, leading to a genetically
homogeneous population independent of the recombination rate
ρ.

While it is difficult to carry out analytical calculations for a
finite θ and δTE, following Doroghazi and Buckley (DOROGHAZI
and BUCKLEY 2011), we consider the limit θ → 0 when µ and
ρ are finite. The time evolution of δ(t) in the limit θ → 0 when
psuccess decays exponentially with divergence is given by (see
Eq. 3)

p(δ→ δ + 1) = 2µ and

p(δ→ 0) = ρe−
δ

δTE (A6)

In Eq. A6, δ(t) is the number of SNPs (as opposed to SNP density
used in the main text). As was shown in the main text, the
evolution of δ(t) described by Eq. A6 is a random walk that
repeatedly resets to zero before eventually escaping to δ → ∞.
The number of resetting events depends on δmut/δTE as defined
in the main text (see low θ/δTE values in Figure 5).

A generalization to non-exponential dependence of the suc-
cess probability is straightforward,

p(δ→ δ + 1) = 2µ and

p(δ→ 0) = ρ f (δ) (A7)

where 1 ≤ f (δ) ≥ 0 is the probability of successful integration.
How weak should the integration barrier f (δ) be so that the
time evolution described by Eq. A7 can never escape the pull of
recombination? In other words, what are the conditions on f (δ)
that ensure that the time evolution of local divergence described
by Eq. A7 results in a random walk that resets to zero infinitely
many times?

If the random walk resets infinitely many times, it has a
well defined stationary distribution as t → ∞. Note that the
random walk described by an exponentially decaying psuccess
does not have a well defined stationary distribution since as
t → ∞, δ(t) → ∞ regardless of the rate of recombination and
the transfer efficiency. Let us assume that f (δ) is such that there
exists a well-defined stationary distribution. We define pi as
the probability that δ = i in the stationary state. We can write
balance equations in the stationary state

2µ× p0 = ρ×
∞

∑
i=1

pi f (i) (A8)

2µ× pi + ρ× pi f (i) = 2µ× pi−1 ∀ i > 0 (A9)

Rearranging

pi = pi−1
1

1 + ρ
2µ f (i)

= p0

j=i

∏
j=1

1
1 + ρ

2µ f (j)
if i > 0

(A10)

Since p0 6= 0, from Eq. A9 and Eq. A10 we have for an arbitrary



f (δ) (denoting ρ/2µ = τ)

s[τ, f ] = τ
∞

∑
i=1

 f (i)
j=i

∏
j=1

1
1 + τ f (j)

 = 1

⇒ m[τ, f ] = 1− s[τ, f ] = ∏
i

1
1 + τ f (i)

= 0 (A11)

Thus, as long as the functional s[τ, f ] in Eq. A11 is equal to 1 (or
m[τ, f ] = 0), the walk remains localized. Eq. A11 is a surpris-
ingly simple result and is valid for any 0 ≤ f (δ) ≤ 1.

Let us consider a specific case where f (δ) = δ−ν. A power-
law dependence in psuccess is weaker than the exponential decay
used in the main text, potentially allowing transfers between
distant bacteria. Let us examine the self-consistency condition.
We have

m(τ, ν) = 1− s(τ, ν) =
∞

∏
i=1

1
1 + τi−ν

(A12)

Taking logarithms and using the Abel-Plana formula

log m(τ, ν) ∼ −
∫ ∞

1
log(1 + τx−ν)dx

= 2F1(1,
ν− 1

ν
; 2− 1

ν
,−τ)× ντ

ν− 1
− log(1 + τ)

(A13)

if ν ≥ 1. The integral (and thus the sum) tends to ∞ when
ν < 1. Here, 2F1 is the hypergeometric function. Thus, when
ν < 1, a well defined stationary distribution exists and as long
as ρ > 0 and µ > 0 regardless of ρ and the population remains
genetically cohesive. When ν > 1, we expect behavior similar to
the exponential case studied in the main text, viz. a divergent
vs metastable transition depending on the competition between
forces of recombinations and mutations. We believe that these
conclusions will also hold true when θ is finite.
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