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Abstract

In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total
number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for
metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal
transfer of pathways from other species. These pathways are part of a larger ‘‘universal’’ network formed by the union of all
species-specific networks. It remained to be understood, however, how the topological properties of this universal network
influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first
analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical
branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and
sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple
substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model
employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model
on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the
number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual
pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback
metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of
topologies of underlying universal metabolic networks. They also demonstrate why, in spite of ‘‘small-world’’ topology, real-
life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in
regulatory networks.
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Introduction

In prokaryotic genomes the number of transcriptional regulators

is known to quadratically scale with the total number of protein-

coding genes [1]. The toolbox model of co-evolution of metabolic

and regulatory networks was recently proposed [2] to explain this

scaling in parts of the genome responsible for metabolic functions.

In this model prokaryotes acquire new metabolic capabilities by

horizontal transfer of entire metabolic pathways from other

organisms. One can conveniently think of these new pathways as

coming from some ‘‘universal network’’ formed by the union of

metabolic repertoires of all potential donor organisms. The essence

of the toolbox argument [2] can be summarized as follows: as the

non-regulatory part of the genome of an organism (its ‘‘toolbox’’)

grows, it typically needs to acquire fewer and fewer extra new genes

(‘‘tools’’) in a pathway offering it some new metabolic capability (e.g.

the ability to utilize a new nutrient or synthesize a new metabolic

product). As a consequence, the number of pathways and by

extension the number of their transcriptional regulators grows faster

than linearly with the number of non-regulatory genes in the

genome. While this qualitative explanation is rather general and

therefore does not depend on specific details such as topology of the

universal network, the exact value of the exponent a connecting the

number of transcription factors (equal to NL- the number of

pathways or leaves of the network) to the number of metabolites in

the metabolic network of an organism NM , as NL*Na
M , is in

general model-dependent. In [2] we mathematically derived the

quadratic scaling (a~2) for the toolbox model with linear pathways

on a fully connected graph in which any pair of metabolites can in

principle be converted to each other in just one step via a single

metabolic reaction. While this situation is obviously unrealistic from

biological standpoint, before present study it remained the only

mathematically treatable variant of the toolbox model. The

universality of the exponent a~2 was then corroborated [2] by

numerical simulations of the toolbox model with linearized

pathways on the universal network formed by the union of all

metabolic reactions in the KEGG database. While the agreement

between the values of the exponent a in these two cases hinted at

underlying general principles at work, the detailed understanding of

these principles remained elusive.
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The question we address in this study is how the topology of the

universal network determines this scaling exponent. To answer this

question we first consider and solve a more realistic (yet still

mathematically treatable) case in which the universal metabolic

network is a directed tree of arbitrary topology. While being closer

to reality than previously solved [2] case of fully connected

network, the toolbox model on a tree-like universal network still

retains a number of simplifications such as strictly linear pathways

and one substrate R one product reactions.

To make our approach even more realistic we propose and

numerically study a completely new version of the toolbox model

incorporating metabolic reactions with multiple substrates and

products as well as branched and cyclic metabolic pathways.

Furthermore, unlike random linear pathways on a universal

network [2] that can be long and therefore suboptimal from an

evolutionary standpoint, the new model uses evolutionarily

optimized pathways with the smallest number of reactions from

the KEGG database sufficient to achieve a given metabolic task.

Results

The toolbox model on a tree-like universal network:
General mathematical description

We will first consider the case where the universal metabolic

network is a directed tree. For simplicity in this section we will

consider the case of catabolic pathways, while identical arguments

(albeit with opposite direction of all reactions) apply to anabolic

pathways. The root of the tree corresponds to the central metabolic

core of the organism responsible for biomass production. Peripheral

catabolic pathways (branches of the tree) convert external nutrients

(leaves) to this core, while the internal nodes of the tree represent

intermediate metabolites. Each of metabolites is characterized by its

distance 0ƒdƒdmax from the root of the network. The universal

network has N
Uð Þ

M dð Þ metabolites at distance d from the root that

included N
Uð Þ

L dð Þ leaves (nutrients used in the first step of catabolic

pathways) and N
Uð Þ

B dð Þ branching points corresponding to

intermediate metabolites generated by more than one metabolic

reaction at the next level (see Figure 1). An organism-specific

network (filled circles and thick edges in Figure 1) at distance d from

the root contains NM dð ÞƒN
Uð Þ

M dð Þ metabolites composed of

NL dð ÞƒN
Uð Þ

L dð Þ leaves, NB dð ÞƒN
Uð Þ

B dð Þ branching points, and

NM dð Þ{NL dð Þ{NB dð Þ metabolites inside linear branches (‘‘one

reaction in-one reaction out’’) . For simplicity we assume that in the

universal network (and thus also in any of its organism-specific

subnetworks) no more than two reaction edges can combine at any

node (metabolite), while the most general case of an arbitrary

distribution of branching numbers can be treated in a very similar

fashion.

The toolbox model specifies rules by which organism acquires

new pathways in the course of its evolution. It consists of the

following steps: 1) randomly pick a new nutrient metabolite (a leaf

node of the universal network that currently does not belong to the

metabolic network of the organism) 2) use the universal network to

identify the unique linear pathway which connects the new nutrient

to the root of the tree (the metabolic core) and finally 3) add the

reactions and intermediate metabolites in the new pathway to the

metabolic network of the organism (filled circles and thick edges in

Figure 1). One needs to only add those enzymes that are not yet

present in the ‘‘genome’’ of the organism. Graphically it means that

the new branch of the universal network is extended until it first

intersects the existing metabolic network of the organism.

Consider an organism capable of utilizing NLƒN
Uð Þ

L nutrients

represented by leaves in the universal network, where

NL~
Xdmax

d~1
NL dð Þ and N

Uð Þ
L ~

Xdmax

d~1
N

Uð Þ
L dð Þ. Since we as-

sume that each nutrient utilization pathway is controlled by a

dedicated transcriptional regulator sensing its presence or absence

in the environment (e.g. LacR for lactose), the corresponding

regulatory network would also have NL transcription factors (in

the model we ignore transcription factors controlling non-

metabolic functions). The non-regulatory part of the genome

consists of NM~
Xdmax

d~1
NM dð Þ enzymes catalyzing metabolic

reactions (strictly speaking NM is the number of metabolites/nodes

so that the number of enzymes/edges is NM{1). Quadratic

scaling plots [1] shows the number of transcriptional regulators

NR~NL vs. the total number of genes in the genome (both

regulatory and non-regulatory) NG~NM{1zNL. However,

since in all organism-specific networks NM & NL, the quadratic

scaling between NR and NG is equivalent to NL*N2
M .

We further assume that due to random selection NL nutrients

are expected to be uniformly distributed among all d levels.

Therefore, the expected number of leaves at a given level is given

by NL dð Þ~tN Uð Þ
L

dð Þ where the fraction t~NL

.
N

Uð Þ
L is the same

at all levels. On the other hand the fraction m dð Þ~
NM dð Þ

.
N

Uð Þ
M dð Þ varies from level to level. It usually tends to

increase as one gets closer towards the root of the tree reaching 1

for d = 0 (the root node itself). To derive the equation for m dð Þ, one

first notices that each of NM dz1ð Þ metabolites at level dz1 is

converted to another intermediate metabolite at level d. Due to

merging of pathways at N
B

dð Þ branching points the number of

unique intermediate metabolites at the level d is actually smaller:

NM dz1ð Þ{NB dð Þ. To calculate NB dð ÞƒN
Uð Þ

B dð Þ one uses the

fact that each of the two nodes downstream of a branching point in

the universal network is present in the organism-specific network

with probability NM (dz1)
.

N
(U)
M (dz1). The probability that

they are both present is NM dz1ð Þ
.

N
Uð Þ

M dz1ð Þ
� �2

and thus the

number of branching points at level d of the organism-specific

metabolic network is NB dð Þ~ NM dz1ð Þ
N

Uð Þ
M dz1ð Þ

 !2

N
Uð Þ

B dð Þ. The

intermediate metabolites together with new nutrients

Author Summary

It has been previously reported that in prokaryotic
genomes the number of transcriptional regulators is
proportional to the square of the total number of genes.
We recently offered a general explanation of this empirical
powerlaw scaling in terms of the ‘‘toolbox’’ model in which
metabolic and regulatory networks co-evolve together.
This evolution is driven by horizontal gene transfer of co-
regulated metabolic pathways from other species. These
pathways are part of a larger ‘‘universal’’ network formed
by the union of all species-specific networks. In the present
work we address the question of how topological
properties of this universal network influence the power-
law scaling of regulators in the toolbox model. We also
generalize its rules to include reactions with multiple
substrates and products, branched and cyclic metabolic
pathways, and to account for optimality of metabolic
pathways. The main conclusion of our analytical and
numerical modeling efforts is that the quadratic scaling is
the robust feature of the toolbox model in a broad range
of universal network topologies. They also demonstrate
why, in spite of ‘‘small-world’’ topology, real-life metabolic
networks are characterized by a broad distribution of
pathway lengths and sizes of regulons in regulatory
networks.

Toolbox Model on Networks of Arbitrary Topology
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NL dð Þ~tN Uð Þ
L

dð Þ entering at the level d add up to the total

number of metabolites at level d :

NM (d)~NM (dz1){
NM (dz1)

N
(U)
M (dz1)

 !2

N (U)

B
(d)ztN (U)

L
(d) ð1Þ

This equation allows one to iteratively calculate NM dð Þ for all d

starting from NM (dmax)~~tN (U)
L

(dmax). We will use this

equation to derive the relationship between the number of leaves

and the total number of nodes first for a critical branching tree and

then for a supercritical one.

The toolbox model on a critical tree
The Galton-Watson branching process [3] is a simple stochastic

process generating random trees, and we will consider its version

where a node can have two, one, or zero neighbors (parents) at the

previous level with probabilities p2, p1 and p0 correspondingly. If

the average number of parents k equals one, then the process is

referred to as critical, and if k is greater than one then the process

is supercritical. More generally critical and supercritical branching

trees can be generated by a variety of random processes such as

e.g. directed percolation [4]. While for simplicity we used the

Galton-Watson branching process in our derivation below, it can

be readily extended to this more general case.

The principal geometric difference between supercritical and

critical trees is that in the former case the number of nodes in a layer

N
(U)
M dð Þ*kd exponentially grows with d [3], while in a critical tree

it grows at most algebraically (for the Galton-Watson critical process

N
Uð Þ

M dð Þ*d [3]). The other difference is that while the critical

branching process always stops on its own at a certain finite height

dmax, a supercritical process will go on forever so that to generate a

tree one has to manually terminate it at a predefined layer dmax. The

most significant feature of a critical tree is that it has much longer

branches than a supercritical one of the same size. Indeed, the

diameter (the maximal height) of a random critical tree with N
(U)
M

nodes is dmax*
ffiffiffiffiffiffiffiffiffiffi
N

(U)
M

q
while in a supercritical tree it is much

shorter: dmax*log N
(U)
M

.
log k. Thus supercritical trees (unlike

their critical counterparts) have the small world property.

A random critical network where each node has at most has two

parents in the previous layer is defined by p0~p2~pƒ0:5. Indeed, in

this case k~0:p0z1:p1z2:p2~1. In such network N
(U)
B dð Þ~

N
Uð Þ

L dð Þ~pN
(U)
M dð Þ and hence the Eq. (1) can be rewritten as

1

p
m dð Þ{ N

(U)
M (dz1)

N
(U)
M (d)

m(dz1)

" #
~t{ m(dz1)½ �2 ð2Þ

A critical branching process that has not terminated by level d

satisfies N
(U)
M dð Þ*d or N

(U)
M dz1ð Þ

.
N

(U)
M dð Þ~1z1=d . More

generally if N
(U)
M dð Þ algebraically increases with d , N

(U)
M

dz1ð Þ
.

N
(U)
M dð Þ asymptotically approaches 1 as

N
(U)
M dz1ð Þ
N

(U)
M dð Þ

~1z
const

d
ð3Þ

Here const=d?0 as d??, thus for 1%d%dmax m dð Þ remains

approximately constant and according to Eq. (2) this constant ratio

m is defined by

t~m2 ð4Þ

This quadratic relation is exact in a critical branching tree where

each node can branch out into at most two nodes at the next layer,

and it is still correct to a leading order in m%1 for a critical

branching tree with arbitrary branching ratios (see ‘‘Quadratic

Figure 1. An example of organism-specific metabolic network and the corresponding universal network. The organism-specific
metabolic network (filled circles and thick edges) is always a subset of the universal network (the entire tree). Nodes are divided into layers based on
their distance d from the root of the tree. Variables N

Uð Þ
M dð Þ, N

Uð Þ
B dð Þ, N

Uð Þ
L dð Þ for the universal network and NM dð Þ, NB dð Þ, NL dð Þ for species-specific

network are illustrated using the layer d~3 as an example.
doi:10.1371/journal.pcbi.1001137.g001

Toolbox Model on Networks of Arbitrary Topology
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relation between m and t for general critical branching processes’’

of Text S1). Furthermore, one can show (see ‘‘Calculation of the

average m in the toolbox model on a critical tree’’ of Text S1) that

in large critical networks the overall fraction of metabolites present

in organism-specific metabolic network is very close to this

stationary limit of m dð Þ: NM

.
N

(U)
M &m.

As was explained in the previous section the ratio NG

.
N

(U)
G

between the total number NG of metabolic-related genes in the

genome of an organism and its theoretical maximal value N
(U)
G

for a genome containing the entire universal network is also

given by m. Furthermore, in our model the number of leaves is

equal to the number of nutrient-utilizing pathways or, alterna-

tively, their transcriptional regulators NR~NL~tN
(U)
L . Thus

like in a much simpler model of Ref. [2] the toolbox model on

any critical tree-like universal network gives rise to quadratic

scaling of the number of transcription factors with the total

number of genes:

NR

.
N

(U)
R ~ NG

.
N

(U)
G

� �2

ð5Þ

The geometrical properties of the universal network such as its

total number of nodes/edges N
(U)
M &N

(U)
G and number of leaves/

branches N
Uð Þ

L &N
Uð Þ

R determine the prefactor of this scaling law.

Simulation of the toolbox model on the critical tree (Figure 2)

verified our mathematical predictions with the best fit to binned

datapoints in Figure 2 giving the exponent a= 1.960.1.

The toolbox model on a supercritical tree

For a supercritical branching process
N

(U)
M dz1ð Þ
N

(U)
M dð Þ

~kw1 and

according to Eq. (1) (See SI for the derivation) the steady state

value m� of m dð Þ satisfies

t~{
k{1

p

� �
m�z

k{1

p
z1

� �
m�

2 ð6Þ

Here p~p0 and k~1{p0zp2w1. Notice that for t~0 one

has two solutions for m�: 0 and m0~ k{1ð Þ= k{1zpð Þ. This

indicates transition in which for t exactly at zero one has m(d)~0,

while for an arbitrary small yet positive t the value of m dð Þ
asymptotically converges to m0w0 for d%dmax. This transition

resembles the first order phase transition, e.g., liquid-gas

transition, where right at the transition point very small variation

of the external parameter such as temperature (analogous to t in

this model) results in a large jump of the order parameter such as

density (analogous to our m dð Þ). (See [5] for details), The number

of layers over which this conversion is taking place is itself a

function of t and for small t it is large. For exponentially growing

supercritical networks and for small t % 1, the network average

value of m(d) defined as m~NM

.
N

(U)
M satisfies

m~
t

m0

k{1

k
logk

m0

t

� �
ð7Þ

Note that this equation connecting m and t (see SI for detailed

derivation) is markedly different from Eq. (6) for steady state value

m� in middle layers.

In conclusion, while the toolbox model on a critical universal

network is characterized by a quadratic scaling between t and m
(see Eq. (4)), the same model on a supercritical, exponentially

expanding universal network gives rise to a linear scaling of t vs. m
albeit with logarithmic corrections (see Eq. (7)). This difference in

exponent equally applies to the scaling of the number of regulators

NR vs. the total number of genes NG in the toolbox model on

critical and supercritical universal network.

Simulation of the toolbox model on the KEGG network
with linearized pathways

To test our mathematical results for a more realistic version of the

universal tree we linearized pathways and reactions in the network

formed by the union of all reactions in the KEGG database [6]. To

this end we generated a random spanning tree on the KEGG

network by the following algorithm: the metabolite pyruvate was

selected as the root of the tree. We then randomly picked a

metabolite located upstream of it and generated a linear pathway

(tree branch) as a self-avoiding random walk on the KEGG network

extended until it either merges with another pathway or reaches the

root of the tree. This step was repeated until all upstream

metabolites were covered. The resulting spanning tree was then

used as the universal network on which we simulated the toolbox

model by gradually increasing the number of pathways NL and

recording the total number of metabolites NM in organism-specific

metabolic networks. Our numerical simulations generated approx-

imately quadratic scaling a~1:8+0:1 (see Ref. [2]).

To better understand the origins of this scaling we investigated

the topology of the underlying universal tree. The criticality of a

tree is defined by the asymptotic value of the ratio N
(U)
M

dz1ð Þ
.

N
(U)
M dð Þ for large d: for supercritical trees it reaches a

limit kw1, while for critical ones it converges to 1 as described in

Eq. (3). Figure 3 showing N
(U)
M dz1ð Þ

.
N

(U)
M dð Þ vs. d in the

linearized KEGG network convincingly demonstrates its criti-

cality. Thus the quadratic scaling between the number of

Figure 2. NL vs. NM . NL is the number of leaves in an organism-
specific metabolic network and equal to the number of transcriptional
regulators of corresponding nutrient-utilizing pathways, while NM is
the total number of nodes/metabolites in this netowrk. The data are
generated by the toolbox model on critical universal network with sizes
around 2000. Solid line NL~Na

M=A, where the exponent a~1:9+0:1
and the prefactor A~1600+400, are the best fits to the binned data.
doi:10.1371/journal.pcbi.1001137.g002

Toolbox Model on Networks of Arbitrary Topology
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transcriptional regulators and the number of metabolites in the

toolbox model simulated on the linearized KEGG network is

explained by the mathematical formalism described in previous

sections.

In addition to using a random spanning tree to linearize the

KEGG network we also tried a version using minimal paths. In

this version the universal network is generated by randomly

picking a metabolite and connecting it to the root of the tree

(pyruvate) by the shortest path. At a first glance such ‘‘minimal

path’’ selection appears to be reasonable from evolutionary

standpoint. Indeed, evolution would favor simpler and shorter

pathways in order to minimize the expenditure of resources to

achieve a given metabolic goal [7] . However, the minimal paths

version of linearization of the KEGG resulted in a supercritical

universal network with logarithmically short branches

d* log N
(U)
M . As predicted for supercritical trees (Eq. (7)) the

toolbox model in this case had an approximately linear scaling of

the number of transcriptional regulators (leaves of branches on the

network) with the total number of metabolites: the measured best

fit exponent was only 1:2+0:1.

How do we reconcile the evolutionary pressure apparently

selecting for minimal pathways with dramatically wrong scaling

properties of this model? We believe that most of the ultra-short

‘‘small world’’ pathways generated by minimal paths on the

KEGG network are unrealistic from biochemical standpoint.

Indeed, highly connected co-factors often position metabolites

with very different chemical formulas in close proximity to each

other. For example, the KEGG reaction R00134: Formatez
NADPz<CO2zNADPH would appear as a miraculous ‘‘one-

step’’ conversion of carbon dioxide into formate, while the

reaction R03546: CO2zCarbamate<CyanatezHzzHCO-
3

would artificially link carbon dioxide and cyanate. The combina-

tion of these two reactions gives rise to equally impossible two-step

path: formate R CO2 R cyanate. As a consequence of such

artificial shortcuts branches of the universal network linearized by

minimal paths are much shorter than they are in reality. .This

problem is at least partially alleviated by 1) removing unusually

high-degree nodes corresponding to common co-factors such as

H2O, ATP, NAD in the metabolic network so that some

unrealistic paths are eliminated, and also 2) using random

spanning tree instead of the shortest paths. In Ref. [2] we followed

both of these recipes to successfully reproduce the quadratic

scaling in real-life data. Still no linearization procedure could

completely avoid biochemically meaningless shortcuts. In the next

section we introduce and study a new considerably more realistic

version of the toolbox model operating on branched and

interconnected universal networks. Pathways in this version of

the toolbox model satisfy the evolutionary requirements for

minimal size. Proper treatment of metabolic reactions with

multiple substrates prevents biochemically meaningless shortcuts

and as a consequence restores the quadratic scaling.

The toolbox model on KEGG network with branched
pathways and multi-substrate reactions

Real metabolic reactions routinely include multiple inputs

(substrates) and multiple outputs (products) (see Table 1 and

Table 2 for statistics in the KEGG database). Furthermore,

metabolic networks often have two or more alternative pathways

generating the same set of end-products from the same set of

nutrients. Both these factors result in metabolic networks that are

branched and interconnected. Here we propose and simulate a

more realistic version of the toolbox model. The most prominent

feature of the new model of pathways is the ‘‘AND’’ function

acting on inputs of multi-substrate reactions. It reflects the

constraint that a reaction cannot be carried out unless all its

substrates are present.

The new version of the toolbox model simulates addition of

anabolic pathways aimed at production of new metabolites from

those the model organism can currently synthesize (its current

metabolic core). The new pathways are optimal in the sense that

they contain the smallest number of reactions necessary to

synthesize the desired end-product. As for previous versions of

the toolbox model, one can modify the rules of this model to apply

to catabolic pathways but for simplicity we will limit the following

discussion to anabolic pathways. The rules of the new model are:

1. At the beginning of the simulation, the model organism starts

with a ‘‘seed’’ metabolic network consisting of 40 metabolites

classified by the KEGG as parts of central carbohydrate

metabolism, plus a number of ‘‘currency’’ metabolites such as

water, ATP and NAD (see the section ‘‘Seed metabolites of the

scope expansion’’ of Text S1 for additional details). It is

assumed that our organism is able to generate all of these

metabolites by some unspecified catabolic pathways.

2. At each step a new metabolite that cannot yet be synthesized

by the organism is randomly selected from the ‘‘scope’’ [8] of

our seed metabolites. This scope consists of all metabolites that

in principle could be synthesized from the seed metabolites

using all reactions listed in the KEGG database (see Ref. [8] for

details).

3. To search for the minimal pathway that converts core

metabolites to this target we first perform the ‘‘scope

expansion’’ [8] of the core until it first reaches the target. In

the course of this expansion reactions and metabolites are

added step by step (or layer by layer). Each layer consists of

all KEGG reactions that have all their substrates among the

metabolites in the current metabolic core of the organism

(light blue area in Figure 4) and those generated by

reactions in all the previous layers. (See Figure 4 for an

illustration).

Figure 3. N (U)
M dz1ð Þ

.
N (U)

M dð Þ vs. d for KEGG-based universal

network with linearized pathways. N
(U)
M dz1ð Þ

.
N

(U)
M dð Þ (the ratio

of the number of metabolites at two consecutive layers) plotted as a
function of d (the layer number) for KEGG-based universal network with
linearized pathways. Solid line: measurement, dotted line: its expected
profile, 1z1=d , in a critical branching tree. The error bars reflect
standard deviation in different spanning trees used to linearize the
KEGG network.
doi:10.1371/journal.pcbi.1001137.g003

Toolbox Model on Networks of Arbitrary Topology
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4. Next we trace back added reactions starting from the target

and progressively moving to lower levels. One starts by finding

the reaction responsible for fabrication of the target

metabolite and adding it to the new pathway (if several such

reactions exist in the last layer we randomly choose one of

them). In case of multi-layer expansion process some

substrates of this reaction are not among the core metabolites

(otherwise this reaction would be in the first layer). One then

goes down one layer and adds the reactions fabricating these

missing substrates. This is repeated all the way down to the

first level of the original expansion. The resulting pathway

includes the minimal (or nearly minimal) set of reactions

needed to generate the target metabolite from the current

metabolic core of the organism. Starting from the next step of

the model the target and all intermediate metabolites become

part of the metabolic core. Genes for enzymes catalyzing these

new reactions are assumed to be horizontally transferred to

the genome of the organism. The newly added metabolic

pathway is assumed to have a dedicated transcriptional

regulator so that the number of transcription factors in our

model is always equal to the number of pathways or their

target metabolites.

5. Steps 1–5 are repeated until metabolic network of the organism

reaches its maximal size. At this stage it includes the entire

scope [8] of the starting set of metabolites in step 1.

Numerical simulation of this model shows that the number of

transcriptional regulators scales with the number of metabolites

with power a~2:0+0:1 (Figure 5). This is consistent with

quadratic scaling we observed and mathematically derived for a

simpler model with linearized pathways composed of single-

substrate reactions.

The mathematical formalism derived in the previous sections is

limited to tree-like universal networks and thus does not directly

apply to the new model. Nevertheless, one generally expects the

quadratic scaling to be limited only to critical, ‘‘large world’’

networks in which organisms with small genomes initially tend to

acquire sufficiently long pathways. As noted before, from purely

topological standpoint the KEGG network has a ‘‘small world’’

property making long pathways unlikely. It is important to check if

the realistic treatment of multi-substrate reactions did in fact

restore the ‘‘large world’’ property and criticality to the KEGG

universal network by increasing the minimal number of steps

required for connecting target metabolites to the metabolic core.

To quantify the criticality of the expansion process as before we

use the ratio N
(U)
M dz1ð Þ

.
N

(U)
M dð Þ where N

(U)
M dð Þ denotes the

number of metabolites reached at step d of the scope expansion

starting from the initial seed subset of metabolites. As in the case of

critical branching trees this ratio asymptomatically converges to 1

thus confirming the criticality of the scope expansion process. The

mere existence of ,40 steps in this process (the x-axis in Figure 6)

can serve as evidence in favor of ‘‘large world’’ character of the

KEGG universal network characterized by the existence of long

pathways.

Geometrical properties of branched pathways in the
model

Unlike linearized pathways in the original version of the toolbox

model [2], branched pathways in the more realistic model from

previous section are interesting objects in their own right. We

identified several geometrical properties of these pathways (see

Figure 4 for illustration) quantifying their position relative to the

core network to which they were added: 1) nborder rxn–the number

of added reactions that are connected (as a substrate or a product)

with at least one metabolite in the core, 2) nbase–the number of

metabolites in the core that serve as substrates to reactions in the

added pathway, 3) nfeedback–the number of core metabolites that

are products of reactions in the new pathway, 4) nbyproduct–the

number of final metabolic products of the added pathway that are

Table 1. The distribution of irreversible reactions classified by their numbers of substrates and products.

The number of products of an irreversible reaction

The number of substrates of an irreversible reaction 1 2 3 4 5

1 157 141 4

2 82 491 95 7

3 1 123 170 31 1

4 10 73 15

5 1

doi:10.1371/journal.pcbi.1001137.t001

Table 2. The distribution of reversible reactions classified by their numbers substrates/products.

The number of substrates/products at one end of a
reversible reaction

The number of substrates/products at the opposite end of a reversible reaction 1 2 3 4 5

1 143 231 6

2 553 284 15

3 106 69 1

4 6 3

doi:10.1371/journal.pcbi.1001137.t002
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neither core metabolites nor the target, 5) length-the number of

steps (layers of the scope expansion process) it takes to transform

core metabolites into the target product. 4 illustrates the definition

of these parameters while Figure 7 and Figure 8 plot these

parameters as a function of nM (the number of metabolites in the

added pathway) or nrxn (the number of reactions in the added

pathway).

Approximately linear relationship between nborder rxn vs. nrxn

(Figure 8a) suggests that added pathways tend to be located at or

near the surface of the core metabolic network of the organism.

Most of reactions in these pathways use metabolites from this

core network either as substrates (nbase) or as products (nfeedback).

Further analysis indicates that ‘‘currency metabolites’’ (common

co-factors that serve as substrates or products of many reactions)

constitute a significant fraction (,25%) of all core metabolites

involved in border reactions (see the section ‘‘Analysis of the

currency metabolites in the toolbox model’’ of Text S1 for

details). On the other hand, the fact that the number of steps in a

pathway (its length) constitutes a good fraction of its overall

number of reactions nrxn implies that, in spite of these numerous

‘‘shortcut’’ connections to the core, added pathways remain very

thin and essentially linear. That is to say, these pathways tend to

work as a single ‘‘conveyor belt’’ sequentially converting

intermediate products into each other instead of having two or

more parallel ‘‘processing lines’’ and assembling final products of

these lines only at final stages of the pathway. This finding

provides an intuitive reason why models with branched and

linearized pathways have similar scaling properties. One can

argue that this is because pathways in both models are essentially

linear. Yet, in spite of their linearity and optimality (each has the

smallest number of reactions to generate the target from the core)

added pathways in the new version of the model are very

different from shortest paths on the universal network. As

illustrated in Figure 9 the average pathway length is several

times longer than the geometrically shortest path between the

target and the core.

Figure 4. Diagram of a new pathway added to the metabolic network of the organism. The diagram explains different types of
metabolites and reactions. Reactions (squares) in the added pathway use base substrates (yellow circles with horizontal shading) from the metabolic
core of the organism (light blue area) to produce the target metabolite (the red circle). Added pathway generates intermediate products (green
circles) as well as byproducts that are not further converted to the target (blue circles). Products of some reactions feed back into the metabolic core
(yellow circles with vertical shading). Reactions are labeled with expansion steps at which they were added to the pathway.
doi:10.1371/journal.pcbi.1001137.g004
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As can be seen from Figure 7, most of added pathways (around

97%) do not generate any byproducts. They only produce the

intended target and nfeedback metabolites in the core network of the

organism to which they were added. The relative scarcity of

byproducts suggests that pathways in our model satisfy the

evolutionary constrains imposed on real-life organisms. Indeed, as

previously proposed in Ref [9] it makes sense to assume that

evolution favors pathways that achieve a given metabolic goal using

the smallest number of enzymes and at the same time striving to

generate the maximal possible yield. Unnecessary byproducts not

only reduce the yield of the desired metabolic target, they also might

become toxic in high concentrations and thus would require extra

transporter proteins to pump them out.

Discussion

The small world property of complex biomolecular networks

has been extensively discussed in the literature during the last

decade (see [10–12] for earliest reports in metabolic and protein

interaction networks correspondingly). It was often assumed that

the small world effect positively contributes to the robustness of the

network by providing multiple redundant pathways for target

production in metabolic networks or for propagation of signals

along regulatory and protein interaction networks. In addition to

its positive aspects the small world property in biomolecular

networks also has a potentially negative side by facilitating system-

wide propagation of undesirable cross-talk [13]. In the course of

evolution different strategies appeared allowing organism to limit

and attenuate these unwelcome side effects of global connectivity.

The extent of small world topology in metabolic networks has

been recently disputed in [14]. There it was argued that many

shortcuts in simple graph representations of metabolic networks

are meaningless from biochemical standpoint. By taking into

account additional structural information about metabolites Arita

[14] dramatically increased the diameter of the metabolic network

in E. coli. In our simulations of the toolbox model we also

encountered limitations of the simple graph representation giving

rise to small world topology of metabolic networks. Small world by

definition implies very short pathways (or equivalently supercritical

Figure 5. NL vs. NM of toolbox model with branched pathways
and multi-substrate reactions. The scaling between the number of
regulated pathways (leaves), NL and the number of metabolites, NM , in
metabolic networks generated by the toolbox model with branched
pathways and multi-substrate reactions. Solid line with slope 2.0+/20.1
is the best fit to the data. Error bars reflect the standard deviation of
NM at a given value of NL in 9 realizations of the model (see he section
‘‘Error analysis of the toolbox model’’ of Text S1 for our estimation
methods and error analysis).
doi:10.1371/journal.pcbi.1001137.g005

Figure 6. N (U)
M dz1ð Þ

.
N (U)

M dð Þ vs. d for the universal network

consisting of all KEGG reactions. The ratio N
(U)
M dz1ð Þ

.
N

(U)
M dð Þ of

the number of metabolites at two consecutive layers of the scope
expansion process plotted versus the layer number d . Scope expansion
was performed for the universal network consisting of all KEGG
reactions. The dashed line is the mathematical expectation of the same
curve in a critical branching process.
doi:10.1371/journal.pcbi.1001137.g006

Figure 7. nbyproduct vs. nM . Faster-than-linear scaling of the number
of byproducts, nbyproduct, and the total number of metabolites, nM , in
individual branched pathways illustrated in Figure 4. Data for individual
pathways were logarithmically binned along the x-axis. Hence y-axis
can be and are below 1 due to pathways with 0 byproducts. The solid
line with exponent 1.7+/20.1 is the best fit to the logarithmically-
binned data shown in this plot. Readers can refer to the section
‘‘Analysis of number of by-product of the pathways of the toolbox
model on the metabolic network with branched pathways and multi-
substrates reactions’’ of Text S1 for our estimation methods and error
analysis.
doi:10.1371/journal.pcbi.1001137.g007
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network branching with exponentially growing lists of neighbors at

distance d ), which in its turn prevents the appearance of quadratic

scaling in the linear toolbox model.

How to reconcile this apparent contradiction? The answer

known from pioneering studies of R. Heinrich and collaborators

(see e.g. [8,15,16] ) is to altogether abandon the simple graph

representation in favor of realistic treatment of multi-substrate

reactions. A metabolic reaction with two or more substrates will

not proceed at any rate until all these metabolites are present in

the cell. This implicit ‘‘AND’’ function operating on inputs of

multi-substrate metabolic reactions makes reaching a given

metabolic target much harder task and ultimately leads to

dramatically longer pathways (Figure 9 quantifies this effect).

These longer pathways in turn reinstate the quadratic scaling in

the version of the toolbox model that was introduced in the

previous section. This leads to the novel conclusion of our study

that, when multi-substrate reactions are properly taken into

account, the small world (supercritical) topology of the metabolic

universe disappears in favor of the ‘‘large world’’ topology

characteristic of critical branching networks. The increase in the

effective diameter of the network due to this effect is dramatic.

One goes from 3–4 steps diameter typical of a small world network

of [12,11] to ,8 steps of [14] and finally to 30–40 layers in the

scope expansion process shown in Figure 6 (see also Figure 6 of

[8]).

These arguments lead us to adapt the ‘‘scope expansion’’

algorithm by Heinrich et al [8] to pathway acquisition in the

toolbox model. Not only did it restore the ‘‘large world’’ properties

such as quadratic scaling to the model, it also made the added

pathways plausible from evolutionary standpoint. Unlike linear

random walk pathways on KEGG network used in [2], pathways

in the new version of the toolbox model have the smallest number

of KEGG reactions to achieve their metabolic task (production of

the target metabolite from the set of metabolites already present in

organism’s network). As can be seen in Figure 7 a large fraction of

these pathways also does not generate any byproducts. Accumu-

lation of such byproducts inside a cell is potentially dangerous and

would require specialized proteins to excrete them to the

Figure 8. Various linear relationships on the individual pathways. Approximately linear relationship between a) pathway’s length and its
number of reactions nrxn, ) b) the number of border reactions, nborder rxn, and the total number of reactions, nrxn, c) the number of base metabolites,
nbase, and the total number of metabolites, nM , d) the number of metabolites receiving feedback, nfeedback, and the total number of metabolites, nM .
These different geometrical properties of individual pathways are illustrated in Figure 4. Sizes of circles are proportional to the logarithm of the
number of discrete (x, y) pairs contributing to this point.
doi:10.1371/journal.pcbi.1001137.g008

Toolbox Model on Networks of Arbitrary Topology

PLoS Computational Biology | www.ploscompbiol.org 9 May 2011 | Volume 7 | Issue 5 | e1001137



environment. The lack of byproducts also means that the useful

yield of an added pathway is at or near its theoretical maximum.

This is consistent with the fact that real biological pathways are

optimized in the course of evolution to increase their yield while

simultaneously reducing the number of reaction steps [7,17,18].

Optimality of metabolic pathways in central carbon metabolism

was recently discussed in Ref. [17]. There it was shown that some

(but not all) of these pathways coincide with the shortest walks in

the space of possible metabolic transformations. This study also

estimated a typical metabolic substrate can in principle be

converted into any of the 20 different products in just one step.

This quickly adds up to a very large number of biochemically

feasible paths connecting metabolites to each other. However, this

exponential growth does not necessarily result in a small world

universal metabolic network. Indeed, evolutionary optimization

leaves just a tiny fraction of these biochemically feasible reactions

to be realized in any organism. The universal metabolic network

formed by the union of all organism-specific metabolic networks is

thus dramatically sparser than the set of all reactions allowed by

the basic rules of biochemistry. Thus, as demonstrated in Ref. [8]

and the present study, the number of metabolites one could

generate in N steps starting from a small core network and using

KEGG-listed metabolic reactions instead of expanding as 20N

grows with N much more slowly (algebraically). The overall

picture consistent with both our observations and those of Ref.

[17] is that exponentially large, supercritical tree of all possible

biochemical transformations is first pruned to an evolutionary

optimized critical universal network out of which individual

organisms select a subset of reactions necessary to accomplish their

metabolic goals: that is to utilize nutrients in their environment

and generate metabolic targets necessary for their operation.

Simplified ‘‘toy’’ models based on artificial chemistry reactions

have a long history of being used to reveal fundamental

organizational principles of metabolic networks:

N The recent model of Riehl et al [18] uses the simplest possible

metabolites distinguished from each other only by the number

of atoms of one element (e.g. carbon). All reactions in this case

are of ligation/cleavage type (e.g. 2z3<5) constrained only

by mass conservation. In spite of utmost simplicity of this

artificial chemistry, the optimal pathways in this model display

a surprisingly rich set of properties and bear some similarity to

real-life metabolic pathways.

N The study of Pfeiffer et el [19] emphasizes the role of different

chemical groups forming metabolites. They consider another

artificial chemistry where metabolites are defined by binary

strings indicating presence or absence of each of N different

chemical groups, and reactions transferring one such chemical

group from one substrate which has it to another substrate

which initially does not. Plausible evolutionary rules of their

model give rise to complex scale-free metabolic networks

emerging from the simple initial condition of N completely

non-specific transferase enzymes.

N Finally the artificial chemistry studied by Hintze et al [20] has

molecules composed of three different types of atoms with

different valences. Metabolites are linear molecules in which

every atom is connected to others by as many bonds as

specified by its valence. This model with rather complicated

rules of evolution is then used to shed light on topics such as

robustness and modularity of metabolic networks.

In our study we used the real-life (even if incomplete and

sometimes noisy) metabolic universe of all reactions in the KEGG

database. The only simplifying approximations remaining in the

new most realistic version of the toolbox model is random selection

of metabolic targets in the course of evolution and easy availability

of any subset of KEGG reactions for horizontal transfer. Both

these approximations can be relaxed in later versions of the model.

Another promising direction is to extend the toolbox model to

artificial chemistry universal networks of Refs. [18], [19], [20].

While taking away from the realism of the model such extensions

might help to broaden our intuition about what topological

properties of the universal network determine the scaling

properties of its species-specific subnetworks.

Materials and Methods

The universal network used in our study consists of the union

of all reactions listed in the KEGG database. The directionality of

reactions and connected pairs of metabolites were inferred from

the map version of the reaction formula: ftp.genome.jp/pub/

kegg/ligand/reaction/reaction?mapformula.lst. The universal

network with linearized pathways used to construct Figure 2

and Figure 3 consists of 1813 metabolites upstream of pyruvate

and 2745 reaction edges out of which 1782 are irreversible and

963 are reversible. The metabolic network with branched and

cyclic pathways used to construct Figure 5–9 consists of

1861metabolites located downstream from the central metabo-

lism and reachable from it by the scope expansion algorithm of

Ref. [8]. It has 2819 reactions out of which 1402 are irreversible

and the remaining 1417 are reversible. Table 1 and Table 2

shows the statistics for the number of substrates and products of

these reactions. The list of core metabolites is obtained from

KEGG Pathways Modules in the category ‘‘central carbohydrate

metabolism’’ and extended with ‘‘currency’’ metabolites includ-

ing water, ATP and NAD. Simulations were done in Matlab and

Octave.

Supporting Information

Text S1 Supplementary information.

Found at: doi:10.1371/journal.pcbi.1001137.s001 (0.37 MB

DOC)

Figure 9. Comparison of lengths of the pathways and shortest
distances of the targets from the core. The lengths of the
pathways are represented by circles and solid line, while the shortest
distances of the targets from the core are represented by crosses and
dotted line.
doi:10.1371/journal.pcbi.1001137.g009
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Calculation of the average  in the toolbox model on a critical tree  

The total fraction of metabolites from the universal network that are present in an organism specific 

network is given by  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

max max

max max

1 1

1 1

d d d U
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d

d d
d d d d

d d
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=

∑ ∑
∑ ∑

. 

The boundary condition at the last layer of the tree does not satisfy the Eq. (4) but instead is given 

by ( )maxdµ τ= . One can easily show that for maxd d< ( )dµ rapidly (exponentially) converges to its 

steady state value µ τ= and stays at this level for as long as 1d   when it starts rising again and 

ultimately approaches 1 at 0d = . In a large critical network the number of nodes in the last and the 

first several layers is small compared to the total number of nodes in the network. Hence in case of a 

critical network one has µ µ≈  

Quadratic relation between  and τ  for general critical branching processes 

The following equation relates ( )dµ  between consecutive layers on arbitrary critical branching 

process: 
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=
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Here kp  is the probability for a node to branch out into k nodes, and the term ( ){ }1 1 1
k

dµ− − +    is 

the probability for a node that branched out into k nodes to have at least one of them picked. In the 

stationary state where µ  is independent of d, we have  
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A critical branching process has 
0

1k
k
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∞

=

=∑ , and this allows the first order term in the right hand side 

cancel with the µ  on the left hand side, thus we have 
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So finally we get ( )2 3~ Oτ µ µ+  for 1, < <τµ , where the quadratic term dominates for small µ . 

Alternative derivation: 

Another derivation, which is independent of layer-to-layer uniformity of branching probabilities pi

( ) ( )U
M

N d

, 

extends the proof from trees generated by Galton-Watson process to more general situations. This 

derivation starts with the conservation law describing changes of  in the universal network 

between two consecutive layers (this equation follows from the Eq. (1) in the manuscript when 

( ) 1dµ τ= = ): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1U U U U
M M B LN d N d N d N d= + − +     

 

For many trees the number of nodes in a layer changes slowly compared to the total number of nodes in 

a layer.  For such trees 
( )( ) ( )( )dNdN U

M
U

M −+1  is small compared with both 
( )( )dN U
B  and 

( )( )dN U
L  and 



thus one can approximately write  
( ) ( ) ( ) ( )U U
B L

N d N d≅ . Here as in the main text we assume that the 

universal network does not have more than 2 branches merging at a given node. In the stationary state 

where ( ) ( )1d dµ µ µ≅ + =  the Eq. (1) from the main text becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21U U U U
M M B LN d N d N d N dµ µ µ τ= + − +  and since 

( ) ( ) ( ) ( )U U
B L

N d N d≅  and 

( ) ( ) ( ) ( )1U U
M M

N d N d+ ≅  we once again get  the quadratic scaling  

 

 

2µτ =  . This argument extends our proof of quadratic scaling to any tree-like universal network in 

which the number of nodes slowly changes from layer to layer. 

Solution to the toolbox model on a supercritical tree 

( )dµ  is the fraction of nodes in organism-specific network at distance d  from the origin of the tree 

satisfies the following difference equation: 

( ) ( ) ( ) ( ) 21 1 [ 1 ]d p k d k p dµ τ µ µ= + + − − + +          (S1) 
 

 

We are interested in small τ  and so ( )dµ  is small, and by keeping only the leading linear term one 

gets ( ) ( )1d p k dµ τ µ= + + . The last layer is special since it contains only leaves and hence 

( )maxdµ τ=  .  

 

Iteratively solving Eq. (S1) one gets  
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where ( ) ( )0 1 1k k pµ = − − + . To arrive at this expression we have made an approximation by 

dropping the quadratic term in Eq. (S1). This made our estimation for ( )dµ  to increase without 

saturating at the steady state. To rescue this we assume that ( )dµ  follows the linearized difference 

equation until it reaches the steady state at the height maxd m− , and then ( )dµ  stays as a 

constant over the region maxd d m< − . Setting the equation 0 0
mkτ µ µ=  we will get 

( )2
0logkm µ τ=  (7) 

 

Now we use the results of eq. (6) and (7) to calculate Mn , picking only the leading order: 
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− −∑ , which represents the 

contribution from the last few layers before the saturation of  ( )dµ . 

 

Error analysis of the toolbox model 

The regression of the data of Figure 2 (NL vs. NM plot of the toolbox model on critical trees) and Figure 5 

(NL vs. NM plot of the toolbox model on the metabolic network with branched pathways and multi-

substrate reactions) in the manuscript was done first by logarithmically binning the data points along 

their y-coordinate (NL), and the exponents was then calculated with ordinary least square using the 

binned curve and taking the y-coordinate as the predictor and minimizing the mean square of the 

difference between the x-coordinate (log NM in our case) of the binned data and the fitted curve. The 

best fit coefficients of the linear regression and their 95% confidence intervals were calculated by the 

“regress” function of the Statistical Toolbox in Matlab 7. We used the y-coordinate as the predictor (as 

opposed to a more traditional use of the x-coordinate as the predictor) because in our simulations NL 

was increased in constant (unit) steps (one leaf was added per each step of the model), while the 

corresponding steps in NM (added pathways’ lengths) varied from simulation to simulation. Thus it was 

natural to view NM as a fluctuating function of NL 

The error bars on slopes (exponents) and prefactors in best linear fits to the binned data in Figure 2 and 

Figure 5 are based on the 95% confidence intervals estimated by the regress function in Matlab. Figure 

S1a shows that different fitting methods give consistent results, which indicates that the spread of the 

raw data is relatively small and will not change our main conclusions obtained from Figure 2 and Figure 

5.   

and not vice versa.  



 

Figure S1a Comparison of different ways of performing the regression analysis. 

LN  vs. MN  data of the toolbox model on 10 different critical trees generated with probability p0 = 0.5 

and p2 = 0.5. The grey crosses represents the raw data; the blue solid line is the best fit curve derived 

from linear regression, i.e., by taking the x-coordinate as the predictor and minimizing the mean square 

difference in y-coordinate between the best fit line and the data points in logarithmic scale; the blue dash 

line is the best fit curve derived from linear regression taking the y-coordinate as the predictor; the red 

solid line is the best fit curve obtained by first logarithmically binning the data along the y-coordinate 

followed by linear regression on the binned curve using the x-coordinate as the predictor in logarithmic 

scale; the red dash line is the best fit curve obtained by first logarithmically binning the data with their y-

coordinate followed by linear regression on the binned curve using the y-coordinate as the predictor in 

logarithmic scale; the green solid line is the best fit curve obtained from powerlaw fitting of the raw 



data; the green solid curve is obtained by binning the along the y-coordinate and followed by fitting with 

powerlaw along the binned curve. All these best fit curves have exponent 1.9. 

 

Furthermore, as shown in Figure S1b, the exponent varies when we consider different range of NL in the 

regression analysis, and this indicates the existence of systematic error. The presence of the systematic 

error suggests that we cannot use the conventional regression analysis, because the error of the 

regression coefficients inversely depends on the square root of the number of data points. In our case 

we want the error to account for the systematic differences of exponent, and therefore we binned the 

data followed by regression. The binning of the data reduces the number of points and so the regression 

analysis that follows can reflect the change of the exponent along different regions, i.e., the systematic 

error, and get rid of the size effect of the size raw data.  

 

Figure S1b Exponent obtained from regression on different ranges of NL

The exponent is obtained by binning of data along the y-coordinates (N

. 

L) followed by regression using 

the x-coordinate as the predictor (NM) in logarithmic scale. The regression analyses are performed on 

different ranges of NL

 

, where all share the same upper limit but their lower limits have different cutoffs. 



Analysis of number of by-product of the pathways of the toolbox model on the metabolic 

network with branched pathways and multi-substrates reactions 

Figure 7 of the manuscript shows the binned curve of nbyproduct vs. nM but does not show any error or raw 

data. The raw data of the plot is shown in Figure S3, and the binning was done by first logarithmically 

grouping the data points according to their x-coordinate (nM) followed by arithmetic averaging of the y-

coordinates of the data points (nbyproduct). Geometric averaging on the y-coordinate was not used despite 

that the x-coordinate was binned logarithmically, because the majority of their values is 0 or 1.  

 

Figure S2  bzproductn  vs. Mn of the toolbox model in the metabolic network with branched pathways and 

multi-substrate reactions. Red circles: raw data; the scale of the circles is proportional to the logarithmic 

of its occurrence. Blue circles and dash line: binning of data by partitioning the x-axis logarithmically and 

average over y coordinates arithmetically. 

Seed metabolites of the scope expansion model 

The following 40 metabolites, except H2O, ATP and NAD, belong to the KEGG modules of central 

carbohydrate metabolism. They all serve as the starting core metabolites in the simulations of scope 



expansion.  

Table S1. Seed metabolites of the scope expansion model 

KEGG Entry number Name 
C00001 H2O 
C00002 ATP 
C00003 NAD+ 
C00022 pyruvate 
C00024 Acetyl-CoA 
C00026 2-Oxoglutarate 
C00036 Oxaloacetate 
C00042 Succinate 
C00074 Phosphoenolpyruvate 
C00085 D-Fructose 6-phosphate 
C00091 Succinyl-CoA 
C00111 Glycerone phosphate 
C00117 D-Ribose 5-phosphate 
C00118 D-Glyceraldehyde 3-phosphate 
C00119 5-Phospho-alpha-D-ribose 1-diphosphate 
C00122 Fumarate 
C00149 L-Malate 
C00158 Citrate 
C00197 3-Phospho-D-glycerate 
C00199 D-Ribulose 5-phosphate 
C00204 2-Dehydro-3-deoxy-D-gluconate 
C00231 D-Xylulose 5-phosphate 
C00236 3-Phospho-D-glyceroyl phosphate 
C00257 D-Gluconate 
C00267 alpha-D-Glucose 
C00279 D-Erythrose 4-phosphate 
C00311 Isocitrate 
C00345 6-Phospho-D-gluconate 
C00577 D-Glyceraldehyde 
C00631 2-Phospho-D-glycerate 
C00668 alpha-D-Glucose 6-phosphate 
C01172 beta-D-Glucose 6-phosphate 
C01236 D-Glucono-1,5-lactone 6-phosphate 
C04442 2-Dehydro-3-deoxy-6-phospho-D-gluconate 
C05345 beta-D-Fructose 6-phosphate 
C05378 beta-D-Fructose 1,6-bisphosphate 
C05382 Sedoheptulose 7-phosphate 



C15972 Lipoamide-E 
C15973 Dihydrolipoamide-E 
C16254 S-Succinyldihydrolipoamide-E 

 

Alternative model: each organism evolves its own network in the absence of  horizontal 

gene transfers 

In the toolbox model where the organisms evolve mainly by HGT, the union of all metabolic enzymes 

forms the universal network which can be represented by a critical tree. One might wonder if the LN  vs. 

MN  plot will remain quadratic if we turn off the HGT and assume that de novo formation of new 

protein is the only way to evolve, and the metabolic network of each organism is an independent tree. 

To study this alternative model, we repeated the Galton-Walton process and generate a set of critical 

trees, and consider the LN  vs. MN  plot. Theoretically, the LN  vs. MN  plot of this alternative model 

will no longer demonstrate any quadratic scaling but only a linear one, with slope being 0p , the 

probability for a node to terminate in a branching process. The simulation of the alternative model was 

performed by repeating the branching process, and that NL = p0 NM as verified (see Figure S3). 

 

Figure S3 LN  vs. MN of trees. The trees are generated with Galton-Watson process with probability 0.5 



to terminate and 0.5 to branch out into 2 children. Scale of circles is proportional to the logarithm of the 

density of data and the dash line is the theoretical prediction, which is LN = 0 Mp N  

 

Analysis of currency metabolites in the toolbox model 

The currency metabolites, i.e., metabolites that serve as inputs for a large number of pathways, have 

special roles in the metabolic network. In the analysis of the border reactions of on the metabolic 

pathways of the toolbox model in the manuscript, we concluded, without taking into account of the 

currency metabolites, that the pathways of the toolbox model are all most linear and lie on the surface 

of the core, receiving metabolites from the core and feeding them back. One might wonder how the 

geometry of the pathways will be affected if we take into account the currency metabolites. To study 

their effects, first of all, let us define l i to be the number of times node i act as a substrate or feedback to 

a pathway in one simulation. The toolbox model simulation was repeated several times and we can get 

the average li. Analysis of the data showed that the distribution of li is divided into two groups (the two 

steep kinks in Figure S4a), and we picked the top ten metabolites with the largest average l i to be 

currency metabolites and plotted the nborder rxn vs. nrxn (Figure S4b). The average number of currency 

metabolites that a typical pathway connects is around 1 (data no shown).  



 

Figure S4a Distribution of the fraction of pathways a metabolite supports. The dash line indicates the 

cutoff, where to the right of the dash line defines the currency metabolites. 

 

Figure S4b nborder rxn  vs. nrxn

 

 before (left) and after (right) the removal of currency metabolites. 

The figures indicate that the removal of currency metabolites does affect the number of border 

reactions and reduce their number by a quarter. Nevertheless this does not change our conclusion that 

pathways are rather linear and lie on the surface of metabolic core. 
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