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Population cycles and species 
diversity in dynamic Kill-the-Winner 
model of microbial ecosystems
Sergei Maslov1 & Kim Sneppen2

Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages 
are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing 
the fastest growing organism from taking over the community. Phage-bacterial ecosystems are 
traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which 
bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more 
dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial 
populations whenever they become sufficiently large. As a consequence, each bacterial population 
in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total 
population of all species fluctuates around the carrying capacity of the environment, making these 
cycles cryptic. While a subset of the slowest growing species in our model is always driven towards 
extinction, in general the overall ecosystem diversity remains high. The number of surviving species 
is inversely proportional to the variation in their growth rates but increases with the frequency and 
severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities 
exposed to more violent perturbations should have higher diversity.

An important and largely unsolved question in microbial ecology is what determines the diversity of microbial 
ecosystems. Indeed, unbridled competition between microbes sharing common resources would eventually limit 
species diversity not to exceed the number of different nutrient types1. Predation by bacteriophages introduces 
the negative frequency-dependent selection2–5 which offers the possibility for a dramatically larger species diver-
sity5. In the classical Kill-the-Winner (KtW) model of Thingstad5 virulent phages reduce populations of their 
susceptible hosts to a low steady state level, which is independent of hosts’ growth rate thus allowing multiple 
species per nutrient type. The number of co-existing bacterial species in the resulting ecosystem is determined 
exclusively by the parameters of phage predation5, the topology of the phage-bacterial infection network6–8, and 
the carrying capacity of the environment4,7–9.

Microbial populations are routinely exposed to more dynamics than assumed in the traditional steady state 
KtW model and its variants. Extended Lotka-Volterra equations for two layer ecosystems of phages and bacte-
ria could predict persistently varying populations10, even without considering mutations. In addition, microbial 
systems are typically exposed to changes in interaction rules and new invading species. For example, in the lab 
experiments11 E. coli population suffered a dramatic collapse by a factor ~104–105 caused by a T7 phage infection. 
Collapse-driven dynamics is common in both natural12 and man-made13–16 ecosystems in which bacteria are 
engaged in the continuous arms race with phages17–21.

Here we propose and explore a particularly simplified dynamical interpretation of Kill-the Winner principle, 
in which bacterial populations are characterized by periods of competitive exponential growth punctuated by 
rapid and severe collapses. Larger bacterial populations in our model are proportionally more likely to be infected 
by phages. Furthermore, in larger and thus denser populations such infections once started are likely to elimi-
nate a sizable fraction of susceptible hosts resulting in a severe collapse in the populations of individual bacterial 
strains. The proposed collapse scenario should should be understood as a very simplified version of a dynamics of 
an open system that is exposed to a variety of externally stresses. Stresses associated to new mutations of already 
present phages, or “epidemics” caused by new invading virulent phages.
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When viewed over a long period of time any given species would repeatedly cycle between low and high pop-
ulation numbers. Such cyclic dynamics of populations of individual species masked by an approximately constant 
total population saturated at the carrying capacity of the environment is discussed in the ecological literature as 
“cryptic cycles”22–24.

Model
Consider a number of bacterial species/strains sharing the same environment and competing for the same 
rate-limiting nutrient defining its carrying capacity. Their populations sizes at time t are denoted as Pi(t), where 
i =  1, 2, … , N. Each of these individual species is exposed to rare but severe collapse events in which its population 
is suddenly and drastically reduced by a constant factor γ ≪  1. We assume that these collapses happen relatively 
rarely so that the total population of all bacterial species has sufficient time to reach the steady state value given by 
the overall carrying capacity of the environment. Without loss of generality carrying capacity can be set to 1, so 
that in between collapses one has ∑ jPj(t) =  1. In our model we assume that while the total population of all stays 
constant, relative population sizes of individual species continue to change exponentially in-between collapse due 
to differences in their fitness in the saturated environment.

In the spirit of Kill-the-Winner principle we assume that the rate of collapse of the species i is proportional to 
its population size Pi. Due to a broad distribution of population sizes this rule strongly biases collapses towards 
one or few largest populations. We assume that collapse events are independent of each other, so that the time 
interval between consecutive collapses is exponentially distributed with mean τ.

One update cycle in our model consist of three steps:

(1) Draw a time interval Δ t until the next collapse event from the exponential distribution P(Δ t) =  exp 
(− Δ t/τ)/τ.

(2) Calculate population sizes at the time of collapse. In between collapse events relative population sizes are 
assumed to change exponentially while the total population stays saturated at 1 (the carrying capacity of the 
environment):
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(3) Select one species to collapse with the probability equal to its relative population size Pi(t +  Δ t) and multiply 
its population by γ.

In our simulations each of N species is assigned its individual growth rate drawn from the Gaussian distribu-
tion with zero mean and standard deviation σ. The value of the mean is not important since normalization of the 
overall population to 1 ensures that only relative growth rates matter. Furthermore, the exact form of the distri-
bution of growth rates is not particularly important. In our mathematical analysis we will use a more convenient 
exponential distribution of growth rates: P(gi) =  exp(− gi/σ)/σ, while delegating more cumbersome derivations 
for the Gaussian P(gi) to supplementary materials.

Results
Collapses supports Diversity. Figure 1A shows a typical outcome of a simulation of our model with 
γ =  10−3 and σ =  4 over around 100 population collapses after which only D =  3 out of N =  8 species survive. 
The relative growth rate gi of the species is the main predictor on whether it will survive or not. Indeed, as shown 
by the rainbow coloring of curves in Fig. 1A ranging from dark red (the slowest growing) to purple (the fastest 
growing) the 3 surviving species have the largest values of gi.

A natural question to ask is what determines the number of surviving species/strains in the steady state of the 
model? In the limit of very rare collapses the fastest growing species would diverge from the rest of the population 
so much that it will be the only one to survive, as indeed expected from the competitive exclusion principle1.

The situation is more complex for intermediate rate of collapses where more than one of the fastest growing 
species can coexist with each other but some of the slowest growers become extinct. In the steady state each of 
these surviving species repeatedly cycles between low and high populations. Faster growing species reach large 
population sizes more often which makes them to collapse more frequently thus eliminating their growth advan-
tage. As we show below this balance can be sustained within a finite range of growth rates.

For each of the species its individual growth rate gi is reduced by the same negative number − gcc due to the 
overall resource competition quantified by the denominator in Eq. 1. In the steady state the excess growth rate of 
each of the surviving species (gi −  gcc) must be exactly compensated by the logarithmic population losses |log γ| 
due to collapses happening at the species-specific probability ci:

γ− ∆ − = .g g t c( ) log 0 (2)i cc i

Note that as the probability of collapse (per update) ci =  (gi −  gcc)Δ t|log γ| needs to be positive and normalized. 
Positive values of ci means that only the fastest growing species with gi >  gcc would survive in the long run. The 
collapse rates of these D surviving species are further constrained by normalization ∑ == c 1j

D
j1 , reflecting the 

requirement of one collapse per update. Using eq. 2 the threshold gcc is then determined by:
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For a given set of species, this allows us to self-consistently calculate gcc and D.
For gi selected from the exponential distribution with standard deviation σ the diversity D is given by (see 

Supplementary Information for derivation)

σ
=

γ
∆
.D

t
log

(4)

This expression holds for average diversity provided that it is larger than 1. This is because a single fastest 
growing species would always survive. Clearly D is also capped from above by N. Similar relation holds for the 
Gaussian distribution of growth rates and is in agreement with our numerical simulations of the model shown 
in Fig. 1B.

For the exponential distribution the growth rate threshold above which a species survives is given by 
gcc =  σ log(N/D) =  σ log(NσΔ t/|log γ|). Note that while threshold explicitly depends on the starting number of 
species, the final diversity given by Eq. 4 is independent of N. This particular property of the exponential distribu-
tion would be modified for other distributions resulting in a mild dependence of D on N.

A Gaussian distribution of growth rates would slightly increase the diversity compared to the exponential 
distribution with the same spread, while a more fat-tailed *(say, power law) distribution would decrease it.

Our basic model can be generalized to the case where different species have different collapse ratios γi. This 
may for example reflect their different degrees of vulnerability to phages, or different ways to partition their pop-
ulation in physical space. The only consequence of this modification is that log γ in the equations above needs to 
be replaced by its average value across species (see supplementary materials for simulation results).

In our model the collapse probability of a given species is proportional to its population size. Thus 
time-averaged relative population size of each of the species species is equal to its overall collapse frequency  
〈 Pi(t)〉 t =  ci. This is consistent with “Kill-the-Winner” principles according to which species with larger popula-
tions collapse more often.

Figure 1. Simulations of Kill-the-Winner model. (A) Time courses of populations of N =  8 species with fixed 
growth rates assigned from the Gaussian distribution with standard deviation σ =  4. Rainbow colors correspond 
to growth rates ranging from the slowest (dark red) to the fastest (purple). For each of the species, the likelihood 
of collapse is proportional to its population sizes (“Kill-the-Winner” rule) and the collapse ratio γ =  10−3 is the 
same for all species. Only 3 fastest growing species survive in the long term. (B) The final diversity D counted 
as number of surviving species as function of σΔ t - the spread of growth rates integrated over the average 
time between collapses. Each black dot represents the outcome of one simulation started with N =  500 species 
exposed to collapse ratio γ =  10−6. The dashed line is the analytical fit similar to Eq. 4 but here done for the 
Gaussian distribution of growth rates used in the simulation (see Supplementary Materials for details).
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Figure 2B illustrates this cyclic dynamics in a system containing a mixture of slow and fast growing species. 
Surviving populations mostly grow, but do so at different rates. Their coexistence is possible only because of the 
negative feedback via “Kill-the-Winner” rule where populations of an individual species get severely reduced 
once it starts to dominate the overall biomass. The population of each of the species goes through approximately 
periodic cycles of growth and collapses with the period Ti =  1/ci =  |log γi|/(gi −  gcc)Δ t (in units of collapse events). 
Thus the slowest surviving species (marked blue in Fig. 2B) nearly never collapse, whereas the fastest growing 
species (marked red in Fig. 2B) obtain dominance and expose themselves to a collapse on a much shorter times-
cale. Individual collapse events of these species are marked in Fig. 2B with red and blue arrows correspondingly. 
Note that the population of the slowest growing species often decreases not due to a phage-mediated collapse but 
simply because it gets temporarily outgrown by other species with a faster growth rate.

For comparison in Fig. 2A we show a system of the same size (D =  10) but where all species have exactly the 
same growth rate. In that case the system has a very long memory of the initially imposed order of species pop-
ulations, because even after a long time each of the species would collapse the same number of times. That is, if 
one species have experienced one more collapse than the others, it would be smaller by a factor γ and thus be 
much less exposed to subsequent collapses until it would regrow to the size where it again may collapse with a 
non-negligible probability. Indeed, populations shown in Fig. 2A follow much more regular oscillatory dynamics 
than those with unequal growth rates shown in Fig. 2B.

Model with collapses to a fixed threshold. In our standard version of the KtW model the collapsing 
population is reduced by a constant factor: Pi →  Pi ⋅  γ. An alternative possibility is that following a collapse the 
population starts at a fixed small threshold value γ irrespective of its earlier population size. This would be the 
case e.g. when following a collapse the local population is completely eliminated and is reintroduced by one 
individual from a neighboring region. It can also happen when a collapse drives one species extinct only to 
be quickly replaced by a single bacterium of a new species. In the thus defined fixed threshold kill-the winner 
model (KtWT) the diversity remains close to what was reported in Fig. 1B (data now shown). The dynamics is 
also characterized by individual population undergoing cycles of duration defined by their relative growth rates 
much similar to what is shown in Fig. 2 for our original model. However the long term memory of cycle order is 
reduced compared to the constant factor model discussed above, simply because every collapse completely erases 
the population history of the collapsed species. In what follows we explore the dynamical properties of the fixed 
threshold model and its variants.

“Kill-the-King” Model. To better understand the cyclic dynamics in the KtWT model we first consider its 
extreme and deterministic version in which the next collapse always happens at the largest population. We will 
refer to this version as Kill-the-King (KtK) model. Furthermore, we assume that the growth rates gi of all species 

Figure 2. Cyclic dynamics in Kill the Winner model. (A) D =  10 species with identical growth rates and 
collapse ratios γi =  10−6. The highlighted purple curve illustrates the characteristic growth and collapse cycle 
for a particular population. (B) Simulation with D =  10 surviving species (down from N =  60) each with growth 
rates selected from the Gaussian distribution with σ =  3, and identical collapse ratios γi =  10−6. The blue arrow 
and the red arrows mark times for collapse events of these two species. Note how the fastest growing species 
(red line) collapses much more often than the slowest growing species (blue line) which only collapsed once 
during the time shown. The growth rate difference between these two species is gmax −  gmin =  2.44.
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are equal to each other. Thereby the asymptotic dynamics becomes periodic with period N when time is measured 
by collapse events.

To concentrate on slow trends in population size dynamics we only measure them between intervals where 
each population collapsed exactly once, which in KtK secure that the order of populations is exactly preserved. 
We relabel species in the order of decreasing population sizes and calculate the ratios δi =  Pi+1/Pi <  1 between 
successive population sizes (The ratio δn for the currently smallest population Pn is defined by its value after the 
next collapse when it becomes the second smallest). As shown in the supplementary materials, in KtK model 
these ratios evolve according to the following discrete equation describing changes acquired after a full round of 
N collapses so that each member of the population collapsed exactly once:

δ δ δ δ δ+ − = ⋅ − .+t N t t t t( ) ( ) ( ) ( ( ) ( )) (5)i i i i i1

The steady state of the equation is reached when all ratios are equal to each other, i.e. δi+1− δi =  0. In this case 
the logarithms of population sizes are equidistantly distributed in the interval of length |log γ| so that δi(∞ )  
=  δ* =  γ1/N. Figure 3 shows a simulation of KtK model with N =  10 and γ =  10−6 One can see how it asymptotically 
approaches this steady state.

The asymptotic dynamics of KtK is described by the discrete Eq. 5 which for large N can be approximated by a 
continuous PDE (see SI for more details) in which the continuous coordinate x replaces the species rank i:
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Here δ(x) has periodic boundary conditions over x-interval [0, N]. As its discrete counterpart this equation 
describes the state of our system every N’th time-step. This equation is closely related to the Burgers equation25,26, 
although it differs in terms of the diffusion coefficient that instead of being constant as in refs 25,26 and is pro-
portional to δ(t).

Having finished with Kill-the-King model we return to Kill-the-Winner fixed Threshold (KtWT) model. In 
the KtWT model population collapses do not always happen in the order dictated by their relative sizes. This 
results in a somewhat chaotic dynamics illustrated in Fig. 4A. When a smaller population collapses out of turn it 
causes only a very small rescaling of other population sizes. The (very likely) subsequent collapse of the largest 
population leads to a situation where these two just collapsed populations become nearly equal in size (δ  1). 
This dramatically increases the likelihood for further re-orderings between these two species, resulting in an 
extended period where these two species fight for dominance. This intermittent dynamics switching the order of 
populations is clearly visible in Fig. 4B with D =  3. The nearly vertical lines clustered around collapse events 5100, 
5200, and 5400 correspond to frequent shifts in the population order of three species within the cycle.

An intermittent region ultimately ends with a particular order winning over. After this all populations slowly 
relax back to the steady state with equal ratios δ* (curved lines ending in horizontal plateaus in Fig. 4B). The exact 
form of the relaxation to the steady state is derived in supplementary materials. While δ(t) ≫  δ* the relaxation is 
proportional to 1/(t/N). The expected number of collapse events for iδ(t) to go from ~1 to ~δ* is ~N/δ* or about 
300 for the parameters used in Fig. 4. When δ δ ⁎t( )  the relaxation crosses over to δ(t) −  δ* ~ exp(− δ*t).

Discussion
Here and before27 we investigated the impact of severe and sudden population collapses on ecosystem composi-
tion and diversity. This approach is complementary to a more traditional description of ecosystem dynamics at or 
around the steady state solution2,5,9,28. The emergent cyclic dynamic in our model is entirely collapse-driven and 

Figure 3. Transient dynamics in Kill-the-King model with N = 10 species that grow equally fast and 
collapse to a fixed population γ  =  10−6. For clarity we show the state of the model only every 10 collapses, 
that is to say, after each species collapsed exactly once so that the population order is maintained. The steady 
state of KtK model where all ratios δi between rank-ordered populations are equal to each other and to γ1/N is 
approximately reached already after 300 collapses. The relaxation to this steady state is described by the discrete 
anisotropic Burgers equation 5 or its continuous counterpart Eq. 6.
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thus distinct from either stable or transient periodic oscillations present in predator-prey ecosystems described 
by the Lotka-Volterra equations10,23,24,28–30.

The key assumption used in our study is that larger populations are more exposed to sudden collapses than the 
smaller populations. This is the foundation of “Kill-the-Winner” (KtW) principle proposed in ref. 5. The resulting 
negative (or stabilizing) frequency-dependent selection promotes the ecosystem diversity even in the simplest 
case considered above, where species interact with each other only via competition for a single rate-limiting 
resource. This KtW bias is very important as it shifts the collapse-driven dynamics away from “diversity waves” 
we reported before27 towards population cycles investigated in this study. Indeed, as demonstrated in ref. 27 a 
version of collapse-driven dynamics in which the likelihood of a collapse is uncorrelated with population size or 
even biased towards smaller populations (Kill-the-Looser model) results in ebbing and flowing species diversity 
and bi-modal distribution of species abundances. This should be contrasted with constant diversity predicted 
in the KtW, KtWT, and KtK models studied here. In our scenario diversity is maintained as population reaches 
dominance and collapses in a particular order. The species abundance distribution in the here presented models 
is not bi-modal but uniform on the logarithmic scale (data not shown).

The model in this paper focus on one particularly lethal aspect of density dependent selection, and analyze 
it in detail. A key result is eq. 4, that quantify a dynamical maintenance of diversity, through frequent collapses 
of the largest populations. The falsifiable prediction is that higher flux of new phages makes well mixed micro-
bial ecosystem more diverse. The obtained diversity is obtained by preferential attack on the largest popula-
tion, whereas the traditional steady state KtW emphasize the coexistence of slow and fast growing bacteria in 
presence of phage5. Our argument for targeting the largest population preferentially is that new virulent phages 
tend to induce larger collapses for host population that facilitate more effective spreading of the phage. In effect 
our scenario is similar to the assumption that larger population densities have larger effective R0-factors for an 
“epidemic”.

Our approach is a simplified approach to analyze an open, yet well defined system. Apart from assuming the 
preferential targeting of large populations, it is formulated in the limit where the total population reach carrying 
capacity before new invasions take place. This last assumption can easily be relaxed by assigning a collapse rate/
collapse size that depend on population sizes also before the sum of all populations reaches carrying capacity. 
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Figure 4. “Kill-the-Winner” Threshold (KtWT) model with 3 species that grow at equal rates and 
ultimately collapse to a fixed population size γ = 10−6. (A) Dynamics of all 3 species, emphasizing that the 
cyclic order occasionally changes, caused by an “out of order” collapse of a population that is not the largest. 
(B) Same time series as in the above panel, but only showing every third time-point. This panel highlights the 
interplay between occasional intermittent alternations in the cyclic order (clustered vertical lines) and longer 
“quiet” periods during which ratios of rank-ordered populations relax towards δ* =  γ1/N.
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We tested that such increasingly frequent collapses also allowed for higher microbial diversity, and found that it 
open for even higher diversity than predicted by eq. 4. This is because the bacteria are then so violently exposed 
to phages that they never sense their mutual competition at saturation.

To test how sensitive are our results with respect to introduction of other types of interactions between bacte-
rial species as well as to a more branched topology of Phage-Bacterial Infection Networks (PBIN) we simulated 
a variant of our model where in addition to abundant (KtW) species the infecting phage results in collapse of a 
constant number K of other bacterial species. This version of the model is reminiscent of the Bak-Sneppen model 
of species co-evolution31. We tested this model for K =  1 and K =  25 (out of N =  500). In the first case we observed 
no impact on diversity, while in the second case the diversity saturated at lower values of σΔ t. All together we 
can conclude that the diversity profile shown in Fig. 1B remains qualitatively (and sometimes even quantitatively) 
unaffected by additional interactions between microbial species or more interconnected PBINs.

According to our results the principal determinant of the ecosystem diversity D is the width σ of the distribu-
tion of logarithmic growth rates of individual bacterial strains or species. This difference is amplified during the 
average time Δ t between population collapses. Thus the overall frequency of collapses is a very important param-
eter with more frequent collapses counter-intuitively resulting in more diverse ecosystems. That is because in our 
scenario frequent collapses weaken the effect of competitive exclusion ultimately driving the diversity down to no 
more than single species per rate-limiting nutrient. Larger magnitude of collapses also promotes higher diversity 
but its impact increases only weakly (logarithmically) with the collapse ratio γ.

It is instructive to compare the determinants of microbial diversity in the static, steady state KtW model and 
in our more dynamic, collapse-driven variant. In the static KtW model2,5 the steady state population size of each 
of the bacteria B* =  δ/βη is determined exclusively by parameters of the phage to which it is susceptible: its burst 
size (β), death (or dispersal and dilution) rate (δ), and its infection rate (η) at a density equal the bacterial carrying 
capacity. This steady state population of a phage-controlled bacterium is usually much lower than the carrying 
capacity of the environment: B* ≪  1. Thus a large number of bacteria each susceptible to its unique phage predator 
can coexists with each other5. Higher diversity can subsequently be achieved by carefully adding pairs of bacteria 
and phages, latter possibly supplemented by their epigenetic variants32, each consuming a small fraction of the 
carrying capacity5,9. Substantial diversity is found to be fragile to new invaders, in the form of bacteria that grow 
faster than resident ones or phages that prey on several bacteria at once9.

In contrast to this the diversity in our model is determined by both statistics of collapses as well as the spread 
of growth rates of resident bacterial species. In case of mild or infrequent collapses and large disparity in bacterial 
growth rates competitive exclusion principle is restored within our model as it then predicts an ecosystem dom-
inated by just one fastest growing bacterium. When collapses are frequent (short Δ t) and severe (large |log γ|), 
while growth rates of individual bacterial strains or species are close to each other (small σ), Eq. 4 predicts high 
diversity of co-existing bacterial species. This prediction is robust with respect to exact causes of collapses, includ-
ing the relatively frequent16 invasion of phages that are capable of infecting several bacterial species.

Overall, the falsifiable (and counter-intuitive) prediction of the collapse-driven “Kill-the-Winner” model dif-
ferentiating it from its stationary counterpart, is that by increasing frequency (and to a smaller extent severity) of 
collapses one could support higher diversity of microorganisms. In real world ecosystems, this particular aspect 
of density dependent selection is to be supplemented by more classical engines of microbial diversity2,5,9,32 and in 
addition be modulated in case spatial heterogeneity33,34 reduce the assumed collapse sizes.
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